Jin Christina Yi, Borst Jelmer P, van Vugt Marieke K
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen 9747AG, The Netherlands.
Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China.
J Neural Eng. 2023 Mar 31;20(2). doi: 10.1088/1741-2552/acc613.
. Mind-wandering is a mental phenomenon where the internal thought process disengages from the external environment periodically. In the current study, we trained EEG classifiers using convolutional neural networks (CNNs) to track mind-wandering across studies.. We transformed the input from raw EEG to band-frequency information (power), single-trial ERP (stERP) patterns, and connectivity matrices between channels (based on inter-site phase clustering). We trained CNN models for each input type from each EEG channel as the input model for the meta-learner. To verify the generalizability, we used leave-N-participant-out cross-validations (= 6) and tested the meta-learner on the data from an independent study for across-study predictions.. The current results show limited generalizability across participants and tasks. Nevertheless, our meta-learner trained with the stERPs performed the best among the state-of-the-art neural networks. The mapping of each input model to the output of the meta-learner indicates the importance of each EEG channel.. Our study makes the first attempt to train study-independent mind-wandering classifiers. The results indicate that this remains challenging. The stacking neural network design we used allows an easy inspection of channel importance and feature maps.
思维游荡是一种心理现象,即内部思维过程会周期性地与外部环境脱离。在当前的研究中,我们使用卷积神经网络(CNN)训练脑电图分类器,以在各项研究中追踪思维游荡。我们将原始脑电图的输入转换为频段信息(功率)、单次试验事件相关电位(stERP)模式以及通道间的连接矩阵(基于位点间相位聚类)。我们针对每个脑电图通道的每种输入类型训练CNN模型,作为元学习器的输入模型。为了验证泛化能力,我们使用留N个参与者外交叉验证(N = 6),并在来自一项独立研究的数据上测试元学习器,以进行跨研究预测。当前结果显示,跨参与者和任务的泛化能力有限。尽管如此,我们用stERP训练的元学习器在最先进的神经网络中表现最佳。每个输入模型到元学习器输出的映射表明了每个脑电图通道的重要性。我们的研究首次尝试训练与研究无关的思维游荡分类器。结果表明,这仍然具有挑战性。我们使用的堆叠神经网络设计便于检查通道重要性和特征图。