Suppr超能文献

人工智能在有色人种人群中色素性皮肤病变分类中的应用:系统评价。

Artificial Intelligence for the Classification of Pigmented Skin Lesions in Populations with Skin of Color: A Systematic Review.

机构信息

The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia.

The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia.

出版信息

Dermatology. 2023;239(4):499-513. doi: 10.1159/000530225. Epub 2023 Mar 21.

Abstract

BACKGROUND

While skin cancers are less prevalent in people with skin of color, they are more often diagnosed at later stages and have a poorer prognosis. The use of artificial intelligence (AI) models can potentially improve early detection of skin cancers; however, the lack of skin color diversity in training datasets may only widen the pre-existing racial discrepancies in dermatology.

OBJECTIVE

The aim of this study was to systematically review the technique, quality, accuracy, and implications of studies using AI models trained or tested in populations with skin of color for classification of pigmented skin lesions.

METHODS

PubMed was used to identify any studies describing AI models for classification of pigmented skin lesions. Only studies that used training datasets with at least 10% of images from people with skin of color were eligible. Outcomes on study population, design of AI model, accuracy, and quality of the studies were reviewed.

RESULTS

Twenty-two eligible articles were identified. The majority of studies were trained on datasets obtained from Chinese (7/22), Korean (5/22), and Japanese populations (3/22). Seven studies used diverse datasets containing Fitzpatrick skin type I-III in combination with at least 10% from black Americans, Native Americans, Pacific Islanders, or Fitzpatrick IV-VI. AI models producing binary outcomes (e.g., benign vs. malignant) reported an accuracy ranging from 70% to 99.7%. Accuracy of AI models reporting multiclass outcomes (e.g., specific lesion diagnosis) was lower, ranging from 43% to 93%. Reader studies, where dermatologists' classification is compared with AI model outcomes, reported similar accuracy in one study, higher AI accuracy in three studies, and higher clinician accuracy in two studies. A quality review revealed that dataset description and variety, benchmarking, public evaluation, and healthcare application were frequently not addressed.

CONCLUSIONS

While this review provides promising evidence of accurate AI models in populations with skin of color, the majority of the studies reviewed were obtained from East Asian populations and therefore provide insufficient evidence to comment on the overall accuracy of AI models for darker skin types. Large discrepancies remain in the number of AI models developed in populations with skin of color (particularly Fitzpatrick type IV-VI) compared with those of largely European ancestry. A lack of publicly available datasets from diverse populations is likely a contributing factor, as is the inadequate reporting of patient-level metadata relating to skin color in training datasets.

摘要

背景

虽然皮肤癌在有色人种中不太常见,但它们往往在晚期被诊断出来,且预后较差。人工智能 (AI) 模型的使用有可能提高皮肤癌的早期检测;然而,训练数据集中缺乏肤色多样性,可能只会扩大皮肤科中现有的种族差异。

目的

本研究旨在系统综述使用在有色人种人群中训练或测试的 AI 模型来分类色素性皮肤病变的技术、质量、准确性和影响。

方法

使用 PubMed 检索描述用于分类色素性皮肤病变的 AI 模型的任何研究。只有使用至少 10%的有色人种图像的训练数据集的研究才有资格入选。综述了研究人群、AI 模型设计、准确性和研究质量的结果。

结果

确定了 22 篇合格的文章。大多数研究的数据集是从中国人(7/22)、韩国人(5/22)和日本人(3/22)中获得的。有 7 项研究使用了包含 Fitzpatrick 皮肤类型 I-III 的多种数据集,其中至少有 10%来自非裔美国人、美洲原住民、太平洋岛民或 Fitzpatrick IV-VI。产生二分类结果(例如良性 vs. 恶性)的 AI 模型的准确性范围为 70%至 99.7%。报告多分类结果(例如特定病变诊断)的 AI 模型的准确性较低,范围为 43%至 93%。读者研究将皮肤科医生的分类与 AI 模型的结果进行比较,一项研究报告了相似的准确性,三项研究报告了更高的 AI 准确性,两项研究报告了更高的临床医生准确性。质量评估显示,数据集描述和多样性、基准测试、公共评估和医疗保健应用通常未得到解决。

结论

虽然本综述提供了 AI 模型在有色人种中准确的有希望的证据,但大多数综述的研究都是从东亚人群中获得的,因此无法对 AI 模型在深色皮肤类型中的总体准确性发表评论。在 AI 模型的开发方面,有色人种(特别是 Fitzpatrick 类型 IV-VI)与主要来自欧洲血统的人群之间存在很大差异。缺乏来自不同人群的公开可用数据集可能是一个促成因素,因为训练数据集中与肤色相关的患者级元数据报告不足也是一个促成因素。

相似文献

10
Teledermatology for diagnosing skin cancer in adults.用于诊断成人皮肤癌的远程皮肤病学。
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013193. doi: 10.1002/14651858.CD013193.

引用本文的文献

2
Dermatology has a skin-colour dilemma.皮肤病学面临着肤色难题。
Nature. 2025 Aug;644(8078):S9. doi: 10.1038/d41586-025-02555-1.
4
A systematic review of microsimulation models for skin cancer.皮肤癌微观模拟模型的系统评价。
BMC Med Inform Decis Mak. 2025 Jul 1;25(1):222. doi: 10.1186/s12911-025-03074-9.
6
Mini review on skin biopsy: traditional and modern techniques.皮肤活检综述:传统与现代技术
Front Med (Lausanne). 2025 Mar 5;12:1476685. doi: 10.3389/fmed.2025.1476685. eCollection 2025.

本文引用的文献

1
Diversity, Race, and Health.多样性、种族与健康。
Med. 2021 Jan 15;2(1):6-10. doi: 10.1016/j.medj.2020.12.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验