Suppr超能文献

利用新型化学信息学方案阐明精油的杀虫作用的分子机制。

Elucidating the molecular mechanisms of essential oils' insecticidal action using a novel cheminformatics protocol.

机构信息

Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil.

Minas Gerais Agricultural Research Company (EPAMIG), Pitangui, MG, Brazil.

出版信息

Sci Rep. 2023 Mar 21;13(1):4598. doi: 10.1038/s41598-023-29981-3.

Abstract

Essential oils (EOs) are a promising source for novel environmentally safe insecticides. However, the structural diversity of their compounds poses challenges to accurately elucidate their biological mechanisms of action. We present a new chemoinformatics methodology aimed at predicting the impact of essential oil (EO) compounds on the molecular targets of commercial insecticides. Our approach merges virtual screening, chemoinformatics, and machine learning to identify custom signatures and reference molecule clusters. By assigning a molecule to a cluster, we can determine its most likely interaction targets. Our findings reveal that the main targets of EOs are juvenile hormone-specific proteins (JHBP and MET) and octopamine receptor agonists (OctpRago). Three of the twenty clusters show strong similarities to the juvenile hormone, steroids, and biogenic amines. For instance, the methodology successfully identified E-Nerolidol, for which literature points indications of disrupting insect metamorphosis and neurochemistry, as a potential insecticide in these pathways. We validated the predictions through experimental bioassays, observing symptoms in blowflies that were consistent with the computational results. This new approach sheds a higher light on the ways of action of EO compounds in nature and biotechnology. It also opens new possibilities for understanding how molecules can interfere with biological systems and has broad implications for areas such as drug design.

摘要

精油(EOs)是一种有前途的新型环境安全杀虫剂的来源。然而,其化合物的结构多样性对准确阐明其生物作用机制提出了挑战。我们提出了一种新的化学信息学方法,旨在预测精油(EO)化合物对商业杀虫剂的分子靶标的影响。我们的方法融合了虚拟筛选、化学信息学和机器学习,以识别自定义特征和参考分子簇。通过将分子分配到一个簇中,我们可以确定其最可能的相互作用靶标。我们的研究结果表明,EO 的主要靶标是保幼激素特异性蛋白(JHBP 和 MET)和章鱼胺受体激动剂(OctpRago)。二十个簇中的三个与保幼激素、类固醇和生物胺有很强的相似性。例如,该方法成功地鉴定了 E-橙花叔醇,文献表明它具有破坏昆虫变态和神经化学的作用,是这些途径中潜在的杀虫剂。我们通过实验生物测定验证了这些预测,观察到了黄粉虫的症状与计算结果一致。这种新方法更深入地揭示了 EO 化合物在自然界和生物技术中的作用方式。它还为了解分子如何干扰生物系统开辟了新的可能性,并对药物设计等领域具有广泛的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca6/10030777/d2146a6fcfaa/41598_2023_29981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验