Suppr超能文献

CT 衍生的血流储备分数用于预测糖尿病患者的主要不良心血管事件。

CT-derived fractional flow reserve for prediction of major adverse cardiovascular events in diabetic patients.

机构信息

Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China.

Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China.

出版信息

Cardiovasc Diabetol. 2023 Mar 21;22(1):65. doi: 10.1186/s12933-023-01801-y.

Abstract

OBJECTIVES

To investigate the prognostic value of computed tomography fractional flow reserve (CT-FFR) in patients with diabetes and to establish a risk stratification model for major adverse cardiac event (MACE).

METHODS

Diabetic patients with intermediate pre-test probability of coronary artery disease were prospectively enrolled. All patients were referred for coronary computed tomography angiography and followed up for at least 2 years. In the training cohort comprising of 957 patients, two models were developed: model1 with the inclusion of clinical and conventional imaging parameters, model2 incorporating the above parameters + CT-FFR. An internal validation cohort comprising 411 patients and an independent external test cohort of 429 patients were used to validate the proposed models.

RESULTS

1797 patients (mean age: 61.0 ± 7.0 years, 1031 males) were finally included in the present study. MACE occurred in 7.18% (129/1797) of the current cohort during follow- up. Multivariate Cox regression analysis revealed that CT-FFR ≤ 0.80 (hazard ratio [HR] = 4.534, p < 0.001), HbA1c (HR = 1.142, p = 0.015) and low attenuation plaque (LAP) (HR = 3.973, p = 0.041) were the independent predictors for MACE. In the training cohort, the Log-likelihood test showed statistical significance between model1 and model2 (p < 0.001). The C-index of model2 was significantly larger than that of model1 (C-index = 0.82 [0.77-0.87] vs. 0.80 [0.75-0.85], p = 0.021). Similar findings were found in internal validation and external test cohorts.

CONCLUSION

CT-FFR was a strong independent predictor for MACE in diabetic cohort. The model incorporating CT-FFR, LAP and HbA1c yielded excellent performance in predicting MACE.

摘要

目的

探讨计算机断层血流储备分数(CT-FFR)在糖尿病患者中的预后价值,并建立主要不良心脏事件(MACE)的风险分层模型。

方法

前瞻性纳入有中等程度冠状动脉疾病预检测验概率的糖尿病患者。所有患者均接受冠状动脉计算机断层血管造影检查,并随访至少 2 年。在包含 957 例患者的训练队列中,建立了两个模型:模型 1 纳入临床和常规影像学参数,模型 2 纳入上述参数+CT-FFR。采用包含 411 例患者的内部验证队列和包含 429 例患者的独立外部测试队列对提出的模型进行验证。

结果

本研究最终纳入 1797 例患者(平均年龄:61.0±7.0 岁,1031 例男性)。随访期间,当前队列中有 7.18%(129/1797)发生 MACE。多变量 Cox 回归分析显示,CT-FFR≤0.80(风险比[HR] = 4.534,p<0.001)、糖化血红蛋白(HbA1c)(HR = 1.142,p = 0.015)和低衰减斑块(LAP)(HR = 3.973,p = 0.041)是 MACE 的独立预测因素。在训练队列中,Log-likelihood 检验显示模型 1 和模型 2之间存在统计学差异(p<0.001)。模型 2 的 C 指数明显大于模型 1(C 指数 = 0.82[0.77-0.87] vs. 0.80[0.75-0.85],p = 0.021)。在内部验证和外部测试队列中也发现了类似的结果。

结论

CT-FFR 是糖尿病患者 MACE 的一个强有力的独立预测因素。纳入 CT-FFR、LAP 和 HbA1c 的模型在预测 MACE 方面具有优异的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9731/10032006/2283059ce7df/12933_2023_1801_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验