Suppr超能文献

一种用于早期识别需要转至姑息治疗的患者(ERPAC)的统计模型。

A Statistical Model for Early Recognition of Patients Requiring Transfer to Palliative Care (ERPAC).

作者信息

Dogu Cihangir, Karcioglu Ayse Muge, Turan Isil Ozkocak, Ankarali Handan

机构信息

Department of Critical Care, Ministry of Health Ankara City Hospital University, Cankaya, Ankara, Turkey.

Department of Critical Care, Ministry of Health Ankara Dışkapı Research and Training Hospital, Dıskapi, Ankara, Turkey.

出版信息

J Coll Physicians Surg Pak. 2023 Mar;33(3):261-265. doi: 10.29271/jcpsp.2023.03.261.

Abstract

OBJECTIVE

To develop a scoring system to identify patients at an early stage who will need palliative care during intensive care follow-up.

STUDY DESIGN

Analytical study.

PLACE AND DURATION OF STUDY

Ankara City Hospital, Neurology and Orthopaedics Hospital, General Intensive Care Unit, Ankara, Turkiye, from June 2019 to March 2020.

METHODOLOGY

Intensive care patients were enrolled and divided into palliative care transfer (p1) and nontransfer groups (p2). The predicted logit value / probality score was calculated and a scoring system was developed, using the formula value, [logit= -3.275 + 0.194 (days of hospitalisation) - 0.345 (SOFAmax) +1.659 (ward admission) + 2.08 (cancer)].

RESULTS

One hundred and thirty five patients were analysed. Sixty-eight (50.4%) were males. The mean age was 67.2 ± 17.2 years. Length of hospital stay (p<0.001), highest sequential organ failure score (SOFAmax, p<0.001), previous hospitalisation (p=0.015), and cancer history (p=0.009) affect the need for palliative care significantly.  Predicted probability = epredicted togit / 1+epredicted logit If predicted probabilty >0.5, patient was candidate for palliative care transfer.

CONCLUSION

Every intensive care unit can calculate its own logit value and represent ERPAC score. ERPAC scores can predict which patients will be transferred to palliative care. Predictedlogit value will help to recognise which patients will need palliative care at an early stage.

KEY WORDS

Palliative care, Scoring, Intensive care.

摘要

目的

开发一种评分系统,以识别在重症监护随访期间需要姑息治疗的早期患者。

研究设计

分析性研究。

研究地点和时间

土耳其安卡拉市安卡拉市立医院、神经病学与矫形外科医院综合重症监护病房,2019年6月至2020年3月。

方法

纳入重症监护患者并分为姑息治疗转移组(p1)和非转移组(p2)。计算预测对数似然值/概率评分,并使用公式值[对数似然值 = -3.275 + 0.194(住院天数)- 0.345(最大序贯器官衰竭评分)+ 1.659(病房入院)+ 2.08(癌症)]开发评分系统。

结果

对135例患者进行了分析。68例(50.4%)为男性。平均年龄为67.2±17.2岁。住院时间(p<0.001)、最高序贯器官衰竭评分(最大序贯器官衰竭评分,p<0.001)、既往住院史(p = 0.015)和癌症病史(p = 0.009)对姑息治疗需求有显著影响。预测概率 = e预测对数似然值 / 1 + e预测对数似然值。如果预测概率>0.5,则患者为姑息治疗转移的候选者。

结论

每个重症监护病房都可以计算自己的对数似然值并表示ERPAC评分。ERPAC评分可以预测哪些患者将被转至姑息治疗。预测对数似然值将有助于早期识别哪些患者需要姑息治疗。

关键词

姑息治疗;评分;重症监护

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验