Shi Chengchun, Li Lexin
London School of Economics and Political Science and University of California at Berkeley.
J Am Stat Assoc. 2022;117(540):2014-2027. doi: 10.1080/01621459.2021.1895177. Epub 2021 Apr 20.
A central question in high-dimensional mediation analysis is to infer the significance of individual mediators. The main challenge is that the total number of potential paths that go through any mediator is super-exponential in the number of mediators. Most existing mediation inference solutions either explicitly impose that the mediators are conditionally independent given the exposure, or ignore any potential directed paths among the mediators. In this article, we propose a novel hypothesis testing procedure to evaluate individual mediation effects, while taking into account potential interactions among the mediators. Our proposal thus fills a crucial gap, and greatly extends the scope of existing mediation tests. Our key idea is to construct the test statistic using the logic of Boolean matrices, which enables us to establish the proper limiting distribution under the null hypothesis. We further employ screening, data splitting, and decorrelated estimation to reduce the bias and increase the power of the test. We show that our test can control both the size and false discovery rate asymptotically, and the power of the test approaches one, while allowing the number of mediators to diverge to infinity with the sample size. We demonstrate the efficacy of the method through simulations and a neuroimaging study of Alzheimer's disease. A Python implementation of the proposed procedure is available at https://github.com/callmespring/LOGAN.
高维中介分析中的一个核心问题是推断个体中介变量的显著性。主要挑战在于,经过任何一个中介变量的潜在路径总数在中介变量数量上呈超指数增长。大多数现有的中介推断解决方案要么明确规定给定暴露因素时中介变量是条件独立的,要么忽略中介变量之间的任何潜在有向路径。在本文中,我们提出了一种新颖的假设检验程序来评估个体中介效应,同时考虑中介变量之间的潜在相互作用。因此,我们的提议填补了一个关键空白,并极大地扩展了现有中介检验的范围。我们的关键思想是使用布尔矩阵逻辑构建检验统计量,这使我们能够在原假设下建立适当的极限分布。我们进一步采用筛选、数据分割和去相关估计来减少偏差并提高检验功效。我们表明,我们的检验在渐近意义上可以控制大小和错误发现率,并且检验功效趋近于1,同时允许中介变量的数量随着样本量趋于无穷大。我们通过模拟和一项关于阿尔茨海默病的神经影像学研究证明了该方法的有效性。所提出程序的Python实现可在https://github.com/callmespring/LOGAN获取。