Suppr超能文献

具有隐藏混杂因素的因果网络的发现与推断。

Discovery and inference of a causal network with hidden confounding.

作者信息

Chen Li, Li Chunlin, Shen Xiaotong, Pan Wei

机构信息

School of Statistics, University of Minnesota, Minneapolis, MN 55455.

Department of Statistics, Iowa State University, Ames, IA 50011.

出版信息

J Am Stat Assoc. 2024;119(548):2572-2584. doi: 10.1080/01621459.2023.2261658. Epub 2023 Nov 17.

Abstract

This article proposes a novel causal discovery and inference method called GrIVET for a Gaussian directed acyclic graph with unmeasured confounders. GrIVET consists of an order-based causal discovery method and a likelihood-based inferential procedure. For causal discovery, we generalize the existing peeling algorithm to estimate the ancestral relations and candidate instruments in the presence of hidden confounders. Based on this, we propose a new procedure for instrumental variable estimation of each direct effect by separating it from any mediation effects. For inference, we develop a new likelihood ratio test of multiple causal effects that is able to account for the unmeasured confounders. Theoretically, we prove that the proposed method has desirable guarantees, including robustness to invalid instruments and uncertain interventions, estimation consistency, low-order polynomial time complexity, and validity of asymptotic inference. Numerically, GrIVET performs well and compares favorably against state-of-the-art competitors. Furthermore, we demonstrate the utility and effectiveness of the proposed method through an application inferring regulatory pathways from Alzheimer's disease gene expression data.

摘要

本文针对存在未测量混杂因素的高斯有向无环图,提出了一种名为GrIVET的新型因果发现与推断方法。GrIVET由一种基于顺序的因果发现方法和一种基于似然的推断程序组成。对于因果发现,我们对现有的剥离算法进行了推广,以在存在隐藏混杂因素的情况下估计祖先关系和候选工具变量。在此基础上,我们提出了一种新的程序,通过将每个直接效应与任何中介效应分离,来估计其工具变量。对于推断,我们开发了一种新的多因果效应似然比检验,该检验能够考虑未测量的混杂因素。从理论上讲,我们证明了所提出的方法具有理想的保证,包括对无效工具变量和不确定干预的稳健性、估计一致性、低阶多项式时间复杂度以及渐近推断的有效性。在数值上,GrIVET表现良好,与现有最佳竞争对手相比具有优势。此外,我们通过从阿尔茨海默病基因表达数据推断调控通路的应用,证明了所提出方法的实用性和有效性。

相似文献

1
Discovery and inference of a causal network with hidden confounding.具有隐藏混杂因素的因果网络的发现与推断。
J Am Stat Assoc. 2024;119(548):2572-2584. doi: 10.1080/01621459.2023.2261658. Epub 2023 Nov 17.
2
Nonlinear causal discovery with confounders.含混杂因素的非线性因果发现
J Am Stat Assoc. 2024;119(546):1205-1214. doi: 10.1080/01621459.2023.2179490. Epub 2023 Mar 15.
6
Likelihood ratio tests for a large directed acyclic graph.针对大型有向无环图的似然比检验。
J Am Stat Assoc. 2020;115(531):1304-1319. doi: 10.1080/01621459.2019.1623042. Epub 2019 Jun 25.
8
Discovering Ancestral Instrumental Variables for Causal Inference From Observational Data.从观测数据中发现用于因果推断的祖先工具变量。
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11542-11552. doi: 10.1109/TNNLS.2023.3262848. Epub 2024 Aug 5.

本文引用的文献

2
Nonlinear causal discovery with confounders.含混杂因素的非线性因果发现
J Am Stat Assoc. 2024;119(546):1205-1214. doi: 10.1080/01621459.2023.2179490. Epub 2023 Mar 15.
4
Federated causal inference in heterogeneous observational data.基于异质观测数据的联邦因果推断。
Stat Med. 2023 Oct 30;42(24):4418-4439. doi: 10.1002/sim.9868. Epub 2023 Aug 8.
5
Testing Mediation Effects Using Logic of Boolean Matrices.使用布尔矩阵逻辑检验中介效应
J Am Stat Assoc. 2022;117(540):2014-2027. doi: 10.1080/01621459.2021.1895177. Epub 2021 Apr 20.
7
Functional Structural Equation Model.功能结构方程模型
J R Stat Soc Series B Stat Methodol. 2022 Apr;84(2):600-629. doi: 10.1111/rssb.12471. Epub 2022 Mar 21.
9
Likelihood ratio tests for a large directed acyclic graph.针对大型有向无环图的似然比检验。
J Am Stat Assoc. 2020;115(531):1304-1319. doi: 10.1080/01621459.2019.1623042. Epub 2019 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验