Suppr超能文献

一份分子定义且空间解析的全小鼠脑图谱。

A molecularly defined and spatially resolved cell atlas of the whole mouse brain.

作者信息

Zhang Meng, Pan Xingjie, Jung Won, Halpern Aaron, Eichhorn Stephen W, Lei Zhiyun, Cohen Limor, Smith Kimberly A, Tasic Bosiljka, Yao Zizhen, Zeng Hongkui, Zhuang Xiaowei

机构信息

Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

bioRxiv. 2023 Mar 7:2023.03.06.531348. doi: 10.1101/2023.03.06.531348.

Abstract

In mammalian brains, tens of millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells in the brain have so far hindered our understanding of the molecular and cellular basis of its functions. Recent advances in spatially resolved single-cell transcriptomics have allowed systematic mapping of the spatial organization of molecularly defined cell types in complex tissues. However, these approaches have only been applied to a few brain regions and a comprehensive cell atlas of the whole brain is still missing. Here, we imaged a panel of >1,100 genes in ~8 million cells across the entire adult mouse brain using multiplexed error-robust fluorescence in situ hybridization (MERFISH) and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating MERFISH and single-cell RNA-sequencing (scRNA-seq) data. Using this approach, we generated a comprehensive cell atlas of >5,000 transcriptionally distinct cell clusters, belonging to ~300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of the MERFISH images to the common coordinate framework (CCF) of the mouse brain further allowed systematic quantifications of the cell composition and organization in individual brain regions defined in the CCF. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes in the gene-expression profiles of cells. Finally, this high-resolution spatial map of cells, with a transcriptome-wide expression profile associated with each cell, allowed us to infer cell-type-specific interactions between several hundred pairs of molecularly defined cell types and predict potential molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a valuable resource for future functional investigations of neural circuits and their dysfunction in diseases.

摘要

在哺乳动物大脑中,数千万到数十亿个细胞形成复杂的相互作用网络,以实现广泛的功能。大脑中细胞的巨大多样性和复杂组织迄今阻碍了我们对其功能的分子和细胞基础的理解。空间分辨单细胞转录组学的最新进展使得在复杂组织中对分子定义的细胞类型的空间组织进行系统映射成为可能。然而,这些方法仅应用于少数脑区,全脑的综合细胞图谱仍然缺失。在这里,我们使用多重误差稳健荧光原位杂交(MERFISH)对整个成年小鼠大脑中约800万个细胞中的1100多个基因进行成像,并通过整合MERFISH和单细胞RNA测序(scRNA-seq)数据,在全转录组水平上进行空间分辨的单细胞表达谱分析。使用这种方法,我们在整个小鼠大脑中生成了一个包含5000多个转录上不同的细胞簇、属于约300种主要细胞类型的综合细胞图谱,具有高分子和空间分辨率。将MERFISH图像注册到小鼠大脑的公共坐标框架(CCF)中,进一步允许对CCF中定义的各个脑区的细胞组成和组织进行系统量化。我们进一步确定了以不同细胞类型组成和空间梯度为特征的空间模块,这些梯度表现为细胞基因表达谱的逐渐变化。最后,这个具有与每个细胞相关的全转录组表达谱的高分辨率细胞空间图谱,使我们能够推断数百对分子定义的细胞类型之间的细胞类型特异性相互作用,并预测这些细胞间相互作用的潜在分子(配体-受体)基础和功能意义。这些结果为大脑的分子和细胞结构提供了丰富的见解,并为未来神经回路及其在疾病中的功能障碍的功能研究提供了宝贵的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c97/10028822/8c5a513c254f/nihpp-2023.03.06.531348v1-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验