Kellogg Collyn M, Pham Kevin, Machalinski Adeline H, Porter Hunter L, Blankenship Harris E, Tooley Kyla, Stout Michael B, Rice Heather C, Sharpe Amanda L, Beckstead Michael J, Chucair-Elliott Ana J, Ocañas Sarah R, Freeman Willard M
Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA.
Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA.
bioRxiv. 2023 Jun 2:2023.03.07.531435. doi: 10.1101/2023.03.07.531435.
Major Histocompatibility Complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating Ribosome Affinity Purification-qPCR analysis of 3-6 and 18-22 month old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes , , , , , and but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I binding Leukocyte Immunoglobulin-like (Lilrs) and Paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell-autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with , suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
主要组织相容性复合体I(MHC-I)在中枢神经系统(CNS)中的细胞定位和功能仍在确定中,此前人们认为大脑中不存在该物质。在小鼠、大鼠和人类的全组织分析中,据报道MHC-I的表达会随着大脑衰老而增加,但细胞定位尚未确定。有人提出神经元MHC-I可调节阿尔茨海默病(AD)中的发育性突触消除和tau病理。在此我们报告,通过新生成的和公开可用的核糖体分析、细胞分选和单细胞数据发现,小胶质细胞是小鼠和人类中经典和非经典MHC-I的主要来源。对3 - 6个月龄和18 - 22个月龄小鼠进行的翻译核糖体亲和纯化-qPCR分析显示,与年龄相关的小胶质细胞对MHC-I通路基因 、 、 、 、 、 和 的诱导显著,但星形胶质细胞和神经元中未出现这种情况。在一个时间进程(12 - 23个月龄)中,小胶质细胞MHC-I逐渐增加,直至21个月龄,然后加速增加。MHC-I蛋白在小胶质细胞中富集,并随衰老而增加。MHC-I结合的白细胞免疫球蛋白样(Lilrs)和配对免疫球蛋白样2型(Pilrs)受体家族在小胶质细胞中有表达,而在星形胶质细胞和神经元中没有,这可能使细胞自主的MHC-I信号传导得以实现,并且在小鼠和人类中随衰老而增加。在多种AD小鼠模型和人类AD数据中,通过多种方法和研究均观察到小胶质细胞MHC-I、Lilrs和Pilrs增加。MHC-I表达与 相关,提示与细胞衰老有关。MHC-I、Lilrs和Pilrs随衰老和AD而保守诱导,这为细胞自主的MHC-I信号传导调节衰老和神经退行性变过程中的小胶质细胞再激活提供了可能性。