Suppr超能文献

琥珀酰辅酶 A 的积累扰乱了耐甲氧西林金黄色葡萄球菌 (MRSA) 的琥珀酰化组,并且与对β-内酰胺类抗生素的敏感性增加有关。

Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant (MRSA) Succinylome and Is Associated with Increased Susceptibility to Beta-Lactam Antibiotics.

机构信息

Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.

MIMS-Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden.

出版信息

mBio. 2021 Jun 29;12(3):e0053021. doi: 10.1128/mBio.00530-21.

Abstract

Penicillin binding protein 2a (PBP2a)-dependent resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in and , but not other TCA cycle enzymes, negatively impact β-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in or , responsible for succinyl-CoA biosynthesis, reversed mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to β-lactam antibiotics. -dependent methicillin resistance in MRSA is subject to regulation by numerous accessory factors involved in cell wall biosynthesis, nucleotide signaling, and central metabolism. Here, we report that mutations in the TCA cycle gene, , increased susceptibility to β-lactam antibiotics and was accompanied by significant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in the proteome. Although cell wall structure and cross-linking were unchanged, significantly increased succinylation of the major autolysin Atl, which was the most succinylated protein in the proteome, was accompanied by near complete repression of autolytic activity. These findings link central metabolism and levels of succinyl-CoA to the regulation of β-lactam antibiotic resistance in MRSA through succinylome-mediated control of two interlinked cell wall phenotypes. Drug-mediated interference of the SucCD-controlled succinylome may help overcome β-lactam resistance.

摘要

青霉素结合蛋白 2a(PBP2a)依赖性耐β-内酰胺抗生素在耐甲氧西林金黄色葡萄球菌(MRSA)中受三羧酸(TCA)循环活性的调节,但其机制尚不清楚。我们报告说, 和 中的突变,但不是其他 TCA 循环酶中的突变,在不改变 PBP2a 表达的情况下对β-内酰胺耐药性产生负面影响。 突变体中琥珀酰辅酶 A(琥珀酰-CoA)的细胞内水平升高,显著扰乱了 MRSA 蛋白质组中的赖氨酸琥珀酰化。 琥珀酰-CoA 生物合成的 或 中的抑制突变逆转了 突变体的表型。主要自溶酶(Atl)是蛋白质组中琥珀酰化程度最高的蛋白质,而 突变体中 Atl 的琥珀酰化增加与自溶活性丧失有关。尽管 PBP2a 和 PBP2 也是 MRSA 蛋白质组中琥珀酰化程度最高的蛋白质之一,但 突变体中肽聚糖结构和交联均未改变。这些数据表明,MRSA 琥珀酰组的扰动影响了两种相互关联的细胞壁表型,导致自溶活性抑制和对β-内酰胺抗生素的敏感性增加。MRSA 中依赖于 PBP2a 的耐甲氧西林作用受到许多参与细胞壁生物合成、核苷酸信号和中心代谢的辅助因子的调节。在这里,我们报告说,TCA 循环基因 的突变增加了对β-内酰胺抗生素的敏感性,并伴有琥珀酰-CoA 的显著积累,进而扰乱了蛋白质组中的赖氨酸琥珀酰化。尽管细胞壁结构和交联没有改变,但主要自溶酶 Atl 的琥珀酰化显著增加, Atl 是蛋白质组中琥珀酰化程度最高的蛋白质,其自溶活性几乎完全被抑制。这些发现将中心代谢和琥珀酰-CoA 水平与通过琥珀酰组蛋白介导的两种相互关联的细胞壁表型的控制联系起来,从而调节 MRSA 中的β-内酰胺抗生素耐药性。药物介导的对 SucCD 控制的琥珀酰组蛋白的干扰可能有助于克服β-内酰胺耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e50a/8437408/83b1e653ddc3/mbio.00530-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验