Volpe Giovanni, Wählby Carolina, Tian Lei, Hecht Michael, Yakimovich Artur, Monakhova Kristina, Waller Laura, Sbalzarini Ivo F, Metzler Christopher A, Xie Mingyang, Zhang Kevin, Lenton Isaac C D, Rubinsztein-Dunlop Halina, Brunner Daniel, Bai Bijie, Ozcan Aydogan, Midtvedt Daniel, Wang Hao, Sladoje Nataša, Lindblad Joakim, Smith Jason T, Ochoa Marien, Barroso Margarida, Intes Xavier, Qiu Tong, Yu Li-Yu, You Sixian, Liu Yongtao, Ziatdinov Maxim A, Kalinin Sergei V, Sheridan Arlo, Manor Uri, Nehme Elias, Goldenberg Ofri, Shechtman Yoav, Moberg Henrik K, Langhammer Christoph, Špačková Barbora, Helgadottir Saga, Midtvedt Benjamin, Argun Aykut, Thalheim Tobias, Cichos Frank, Bo Stefano, Hubatsch Lars, Pineda Jesus, Manzo Carlo, Bachimanchi Harshith, Selander Erik, Homs-Corbera Antoni, Fränzl Martin, de Haan Kevin, Rivenson Yair, Korczak Zofia, Adiels Caroline Beck, Mijalkov Mite, Veréb Dániel, Chang Yu-Wei, Pereira Joana B, Matuszewski Damian, Kylberg Gustaf, Sintorn Ida-Maria, Caicedo Juan C, Cimini Beth A, Bell Muyinatu A Lediju, Saraiva Bruno M, Jacquemet Guillaume, Henriques Ricardo, Ouyang Wei, Le Trang, Gómez-de-Mariscal Estibaliz, Sage Daniel, Muñoz-Barrutia Arrate, Lindqvist Ebba Josefson, Bergman Johanna
ArXiv. 2023 Mar 7:arXiv:2303.03793v1.
Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of machine learning for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.
通过数字成像技术,显微镜已从主要作为一种在微观和纳米尺度上对生命进行视觉观察的手段,演变成一种分辨率和通量不断提高的定量工具。人工智能、深度神经网络和机器学习都是描述计算方法的专业术语,在过去十年中,这些方法在基于显微镜的研究中发挥了关键作用。本路线图由杰出的研究人员共同撰写,涵盖了机器学习应用于显微镜图像数据的选定方面,旨在通过提高图像质量、自动检测、分割、分类和跟踪物体以及有效合并来自多种成像模式的信息来获取科学知识。我们旨在为读者提供机器学习在显微镜领域的关键发展概述,并让读者了解其可能性和局限性。它将引起物理科学和生命科学领域广泛的跨学科读者的兴趣。