Suppr超能文献

病毒跨尺度显微镜的机器学习。

Machine learning for cross-scale microscopy of viruses.

机构信息

Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

出版信息

Cell Rep Methods. 2023 Sep 25;3(9):100557. doi: 10.1016/j.crmeth.2023.100557. Epub 2023 Aug 17.

Abstract

Despite advances in virological sciences and antiviral research, viruses continue to emerge, circulate, and threaten public health. We still lack a comprehensive understanding of how cells and individuals remain susceptible to infectious agents. This deficiency is in part due to the complexity of viruses, including the cell states controlling virus-host interactions. Microscopy samples distinct cellular infection stages in a multi-parametric, time-resolved manner at molecular resolution and is increasingly enhanced by machine learning and deep learning. Here we discuss how state-of-the-art artificial intelligence (AI) augments light and electron microscopy and advances virological research of cells. We describe current procedures for image denoising, object segmentation, tracking, classification, and super-resolution and showcase examples of how AI has improved the acquisition and analyses of microscopy data. The power of AI-enhanced microscopy will continue to help unravel virus infection mechanisms, develop antiviral agents, and improve viral vectors.

摘要

尽管病毒学科学和抗病毒研究取得了进展,但病毒仍在不断出现、传播并威胁着公共健康。我们仍然缺乏对细胞和个体如何仍然容易受到感染因子影响的全面了解。这种缺陷部分是由于病毒的复杂性,包括控制病毒-宿主相互作用的细胞状态。显微镜以分子分辨率的多参数、时分辨方式对不同的细胞感染阶段进行采样,并且越来越多地通过机器学习和深度学习得到增强。在这里,我们讨论了最先进的人工智能 (AI) 如何增强光和电子显微镜,并推进细胞病毒学研究。我们描述了当前用于图像去噪、目标分割、跟踪、分类和超分辨率的程序,并展示了 AI 如何改进显微镜数据的获取和分析的示例。AI 增强显微镜的强大功能将继续帮助揭示病毒感染机制、开发抗病毒药物和改进病毒载体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4532/10545915/2f29f526971c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验