Suppr超能文献

在未选择的 AD 临床研究人群中进行言语筛查 (PROSPECT-AD):研究设计和方案。

Screening over Speech in Unselected Populations for Clinical Trials in AD (PROSPECT-AD): Study Design and Protocol.

机构信息

Alexandra König, ki:elements GmbH, Am Holzbrunnen 1a, D-66121 Saarbrücken, Email:

出版信息

J Prev Alzheimers Dis. 2023;10(2):314-321. doi: 10.14283/jpad.2023.11.

Abstract

BACKGROUND

Speech impairments are an early feature of Alzheimer's disease (AD) and consequently, analysing speech performance is a promising new digital biomarker for AD screening. Future clinical AD trials on disease modifying drugs will require a shift to very early identification of individuals at risk of dementia. Hence, digital markers of language and speech may offer a method for screening of at-risk populations that are at the earliest stages of AD, eventually in combination with advanced machine learning. To this end, we developed a screening battery consisting of speech-based neurocognitive tests. The automated test performs a remote primary screening using a simple telephone.

OBJECTIVES

PROSPECT-AD aims to validate speech biomarkers for identification of individuals with early signs of AD and monitor their longitudinal course through access to well-phenotyped cohorts.

DESIGN

PROSPECT-AD leverages ongoing cohorts such as EPAD (UK), DESCRIBE and DELCODE (Germany), and BioFINDER Primary Care (Sweden) and Beta-AARC (Spain) by adding a collection of speech data over the telephone to existing longitudinal follow-ups. Participants at risk of dementia are recruited from existing parent cohorts across Europe to form an AD 'probability-spectrum', i.e., individuals with a low risk to high risk of developing AD dementia. The characterization of cognition, biomarker and risk factor (genetic and environmental) status of each research participants over time combined with audio recordings of speech samples will provide a well-phenotyped population for comparing novel speech markers with current gold standard biomarkers and cognitive scores.

PARTICIPANTS

N= 1000 participants aged 50 or older will be included in total, with a clinical dementia rating scale (CDR) score of 0 or 0.5. The study protocol is planned to run according to sites between 12 and 18 months.

MEASUREMENTS

The speech protocol includes the following neurocognitive tests which will be administered remotely: Word List [Memory Function], Verbal Fluency [Executive Functions] and spontaneous free speech [Psychological and/ or behavioral symptoms]. Speech features on the linguistic and paralinguistic level will be extracted from the recordings and compared to data from CSF and blood biomarkers, neuroimaging, neuropsychological evaluations, genetic profiles, and family history. Primary candidate marker from speech will be a combination of most significant features in comparison to biomarkers as reference measure. Machine learning and computational techniques will be employed to identify the most significant speech biomarkers that could represent an early indicator of AD pathology. Furthermore, based on the analysis of speech performances, models will be trained to predict cognitive decline and disease progression across the AD continuum.

CONCLUSION

The outcome of PROSPECT-AD may support AD drug development research as well as primary or tertiary prevention of dementia by providing a validated tool using a remote approach for identifying individuals at risk of dementia and monitoring individuals over time, either in a screening context or in clinical trials.

摘要

背景

言语障碍是阿尔茨海默病(AD)的早期特征,因此,分析言语表现是 AD 筛查的一种有前途的新的数字生物标志物。未来针对疾病修饰药物的 AD 临床试验将需要转向对痴呆风险个体的早期识别。因此,语言和言语的数字标志物可能为处于 AD 最早阶段的风险人群提供一种筛查方法,最终与先进的机器学习相结合。为此,我们开发了一个由基于语音的神经认知测试组成的筛查电池。自动化测试通过简单的电话进行远程初步筛查。

目的

PROSPECT-AD 旨在验证用于识别具有早期 AD 迹象的个体的言语生物标志物,并通过访问具有良好表型的队列来监测他们的纵向过程。

设计

PROSPECT-AD 利用正在进行的队列,如 EPAD(英国)、DESCRIBE 和 DELCODE(德国)、BioFINDER 初级保健(瑞典)和 Beta-AARC(西班牙),通过在现有的纵向随访中添加一系列电话语音数据来增加。从整个欧洲的现有父母队列中招募有痴呆风险的个体,以形成 AD“可能性谱”,即具有低至高 AD 痴呆风险的个体。每个研究参与者的认知、生物标志物和风险因素(遗传和环境)状态随时间的特征,加上语音样本的录音,将为比较新的言语标志物与当前的黄金标准生物标志物和认知评分提供一个具有良好表型的人群。

参与者

总共有 1000 名年龄在 50 岁或以上的参与者将被纳入,他们的临床痴呆评分量表(CDR)评分为 0 或 0.5。研究方案计划根据站点在 12 至 18 个月内运行。

测量

语音协议包括以下远程管理的神经认知测试:单词列表[记忆功能]、词语流畅性[执行功能]和自发自由演讲[心理和/或行为症状]。将从录音中提取语言和副语言水平的语音特征,并与 CSF 和血液生物标志物、神经影像学、神经心理学评估、遗传谱和家族史进行比较。言语的主要候选标志物将是与作为参考测量的生物标志物相比最显著特征的组合。将使用机器学习和计算技术来识别最显著的言语生物标志物,这些标志物可能代表 AD 病理的早期指标。此外,基于言语表现的分析,将训练模型来预测 AD 连续体中认知下降和疾病进展。

结论

PROSPECT-AD 的结果可以通过提供一种使用远程方法识别痴呆风险个体并随时间监测个体的经过验证的工具,支持 AD 药物开发研究以及痴呆的一级或三级预防,无论是在筛查环境还是临床试验中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验