Suppr超能文献

中国黄河流域灰水足迹效率的变化及内外驱动力。

Variation and internal-external driving forces of grey water footprint efficiency in China's Yellow River Basin.

机构信息

Business school, Hohai University, Nanjing, China.

Business school, Jiangsu Open University, Zhenjiang, China.

出版信息

PLoS One. 2023 Mar 22;18(3):e0283199. doi: 10.1371/journal.pone.0283199. eCollection 2023.

Abstract

Grey water footprint (GWF) efficiency is a reflection of both water pollution and the economy. The assessment of GWF and its efficiency is conducive to improving water environment quality and achieving sustainable development. This study introduces a comprehensive approach to assessing and analyzing the GWF efficiency. Based on the measurement of the GWF efficiency, the kernel density estimation and the Dagum Gini coefficient method are introduced to investigate the spatial and temporal variation of the GWF efficiency. The Geodetector method is also innovatively used to investigate the internal and external driving forces of GWF efficiency, not only revealing the effects of individual factors, but also probing the interaction between different drivers. For demonstrating this assessment approach, nine provinces in China's Yellow River Basin from 2005 to 2020 are chosen for the study. The results show that: (1) the GWF efficiency of the basin increases from 23.92 yuan/m3 in 2005 to 164.87 yuan/m3 in 2020, showing a distribution pattern of "low in the western and high in the eastern". Agricultural GWF is the main contributor to the GWF. (2) The temporal variation of the GWF efficiency shows a rising trend, and the kernel density curve has noticeable left trailing and polarization characteristics. The spatial variation of the GWF efficiency fluctuates upwards, accompanied by a rise in the overall Gini coefficient from 0.25 to 0.28. Inter-regional variation of the GWF efficiency is the primary source of spatial variation, with an average contribution of 73.39%. (3) For internal driving forces, economic development is the main driver of the GWF efficiency, and the interaction of any two internal factors enhances the explanatory power. For external driving forces, capital stock reflects the greatest impact. The interaction combinations with the highest q statistics for upstream, midstream and downstream are capital stock and population density, technological innovation and population density, and industrial structure and population density, respectively.

摘要

灰水足迹(GWF)效率反映了水污染和经济两个方面。评估 GWF 及其效率有助于改善水环境质量,实现可持续发展。本研究引入了一种综合的 GWF 效率评估和分析方法。基于 GWF 效率的度量,引入核密度估计和 Dagum Gini 系数方法来研究 GWF 效率的时空变化。还创新性地使用 Geodetector 方法来研究 GWF 效率的内部和外部驱动力,不仅揭示了单个因素的影响,还探测了不同驱动因素之间的相互作用。为了演示这种评估方法,选择了中国黄河流域的 9 个省份,研究时间跨度为 2005 年至 2020 年。结果表明:(1)流域的 GWF 效率从 2005 年的 23.92 元/m3增加到 2020 年的 164.87 元/m3,呈现出“西部低、东部高”的分布格局。农业 GWF 是 GWF 的主要贡献者。(2)GWF 效率的时间变化呈上升趋势,核密度曲线具有明显的左拖尾和极化特征。GWF 效率的空间变化呈波动上升趋势,整体基尼系数从 0.25 上升到 0.28。GWF 效率的区域间变化是空间变化的主要来源,平均贡献为 73.39%。(3)对于内部驱动力,经济发展是 GWF 效率的主要驱动力,任何两个内部因素的相互作用都增强了解释力。对于外部驱动力,资本存量反映了最大的影响。上游、中游和下游的 q 统计量最高的交互组合分别是资本存量和人口密度、技术创新和人口密度以及产业结构和人口密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83f9/10032503/adfdf09c1e78/pone.0283199.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验