Suppr超能文献

基于约束极大似然的稳健多变量孟德尔随机化。

Robust multivariable Mendelian randomization based on constrained maximum likelihood.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA.

Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Am J Hum Genet. 2023 Apr 6;110(4):592-605. doi: 10.1016/j.ajhg.2023.02.014. Epub 2023 Mar 21.

Abstract

Mendelian randomization (MR) is a powerful tool for causal inference with observational genome-wide association study (GWAS) summary data. Compared to the more commonly used univariable MR (UVMR), multivariable MR (MVMR) not only is more robust to the notorious problem of genetic (horizontal) pleiotropy but also estimates the direct effect of each exposure on the outcome after accounting for possible mediating effects of other exposures. Despite promising applications, there is a lack of studies on MVMR's theoretical properties and robustness in applications. In this work, we propose an efficient and robust MVMR method based on constrained maximum likelihood (cML), called MVMR-cML, with strong theoretical support. Extensive simulations demonstrate that MVMR-cML performs better than other existing MVMR methods while possessing the above two advantages over its univariable counterpart. An application to several large-scale GWAS summary datasets to infer causal relationships between eight cardiometabolic risk factors and coronary artery disease (CAD) highlights the usefulness and some advantages of the proposed method. For example, after accounting for possible pleiotropic and mediating effects, triglyceride (TG), low-density lipoprotein cholesterol (LDL), and systolic blood pressure (SBP) had direct effects on CAD; in contrast, the effects of high-density lipoprotein cholesterol (HDL), diastolic blood pressure (DBP), and body height diminished after accounting for other risk factors.

摘要

孟德尔随机化(MR)是一种利用观察性全基因组关联研究(GWAS)汇总数据进行因果推断的强大工具。与更常用的单变量 MR(UVMR)相比,多变量 MR(MVMR)不仅更能抵抗遗传(水平)多效性这一臭名昭著的问题,而且还可以在考虑其他暴露因素可能的中介效应后,估计每个暴露因素对结果的直接影响。尽管 MVMR 在应用中有很大的潜力,但它的理论性质和稳健性在研究中仍然缺乏。在这项工作中,我们提出了一种基于约束最大似然(cML)的高效稳健的 MVMR 方法,称为 MVMR-cML,它具有很强的理论支持。广泛的模拟表明,MVMR-cML 的性能优于其他现有的 MVMR 方法,同时具有优于其单变量对应方法的上述两个优点。将该方法应用于多个大型 GWAS 汇总数据集,以推断八种心血管代谢风险因素与冠心病(CAD)之间的因果关系,突出了所提出方法的有用性和一些优点。例如,在考虑可能的多效性和中介效应后,甘油三酯(TG)、低密度脂蛋白胆固醇(LDL)和收缩压(SBP)对 CAD 有直接影响;相比之下,在考虑其他危险因素后,高密度脂蛋白胆固醇(HDL)、舒张压(DBP)和身高的影响减小。

相似文献

引用本文的文献

9
Association between CKD and Kidney Stones: A Reliable Relationship?慢性肾脏病与肾结石之间的关联:一种可靠的关系?
J Am Soc Nephrol. 2025 Jun 1;36(6):1227-1228. doi: 10.1681/ASN.0000000678. Epub 2025 Mar 26.

本文引用的文献

5
Mendelian randomization and pleiotropy analysis.孟德尔随机化与多效性分析
Quant Biol. 2021 Jul 13;9(2):122-132. doi: 10.1007/s40484-020-0216-3. Epub 2020 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验