Suppr超能文献

通过质谱法对蛋白酶进行多重底物谱分析。

Multiplex substrate profiling by mass spectrometry for proteases.

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.

出版信息

Methods Enzymol. 2023;682:375-411. doi: 10.1016/bs.mie.2022.09.009. Epub 2022 Dec 21.

Abstract

Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.

摘要

蛋白水解是许多生物途径的重要调节因子,对蛋白酶的研究对我们对天然生物学和疾病的理解产生了重大影响。蛋白酶是传染病的关键调节剂,人类中失调的蛋白水解会导致多种疾病,包括心血管疾病、神经退行性疾病、炎症性疾病和癌症。要了解蛋白酶的生物学作用,关键是要描述其底物特异性。本章将有助于描述单个蛋白酶和复杂、异质的蛋白水解混合物,并提供利用失调蛋白水解进行描述的广泛应用的例子。在这里,我们提出了通过质谱(MS)进行多重底物谱分析(MSP-MS)的方案,这是一种使用物理化学性质多样的合成模型肽底物库和质谱定量描述蛋白水解的功能测定法。我们提供了详细的方案以及 MSP-MS 在疾病状态研究、诊断和预后测试开发、工具化合物生成以及蛋白酶靶向药物开发中的应用示例。

相似文献

1
Multiplex substrate profiling by mass spectrometry for proteases.
Methods Enzymol. 2023;682:375-411. doi: 10.1016/bs.mie.2022.09.009. Epub 2022 Dec 21.
2
Global substrate specificity profiling of post-translational modifying enzymes.
Protein Sci. 2018 Mar;27(3):584-594. doi: 10.1002/pro.3352. Epub 2017 Dec 8.
3
Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry.
Mol Cell Proteomics. 2019 May;18(5):968-981. doi: 10.1074/mcp.TIR118.001099. Epub 2019 Jan 31.
4
Profiling Sequence Specificity of Proteolytic Activities Using Proteome-Derived Peptide Libraries.
Methods Mol Biol. 2022;2447:159-174. doi: 10.1007/978-1-0716-2079-3_13.
5
Profiling protease activities by dynamic proteomics workflows.
Proteomics. 2012 Feb;12(4-5):587-96. doi: 10.1002/pmic.201100399. Epub 2012 Jan 23.
6
Monitoring proteolytic processing events by quantitative mass spectrometry.
Expert Rev Proteomics. 2017 May;14(5):409-418. doi: 10.1080/14789450.2017.1316977. Epub 2017 Apr 17.
7
N-Terminomics Strategies for Protease Substrates Profiling.
Molecules. 2021 Aug 3;26(15):4699. doi: 10.3390/molecules26154699.
9
Protease proteomics: revealing protease in vivo functions using systems biology approaches.
Mol Aspects Med. 2008 Oct;29(5):339-58. doi: 10.1016/j.mam.2008.04.003. Epub 2008 May 1.
10
Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini.
Methods Enzymol. 2014;544:327-58. doi: 10.1016/B978-0-12-417158-9.00013-3.

引用本文的文献

2
Macrocyclic Phage Display for Identification of Selective Protease Substrates.
J Am Chem Soc. 2025 Jul 30;147(30):26307-26318. doi: 10.1021/jacs.5c04424. Epub 2025 Jul 18.
3
Conserved specificity of extracellular wastewater peptidases revealed by multiplex substrate profiling by mass spectrometry.
Environ Chem Lett. 2025;23(4):953-959. doi: 10.1007/s10311-025-01834-7. Epub 2025 Apr 12.
4
5
Macrocyclic phage display for identification of selective protease substrates.
bioRxiv. 2025 Mar 15:2025.03.13.643185. doi: 10.1101/2025.03.13.643185.
6
Comprehensive proteolytic profiling of Aedes aegypti mosquito midgut extracts: Unraveling the blood meal protein digestion system.
PLoS Negl Trop Dis. 2025 Feb 6;19(2):e0012555. doi: 10.1371/journal.pntd.0012555. eCollection 2025 Feb.
8
Proteolysis Assays With Conserved or Aminofluorescein-Labeled Red Blood Cells.
Biomed Res Int. 2024 Sep 27;2024:7919329. doi: 10.1155/2024/7919329. eCollection 2024.
9
A Protease-Responsive Polymer/Peptide Conjugate and Reversible Assembly of Silver Clusters for the Detection of Enzymatic Activity.
ACS Nano. 2023 Sep 12;17(17):17308-17319. doi: 10.1021/acsnano.3c05268. Epub 2023 Aug 21.
10
Activation mechanism and activity of globupain, a thermostable C11 protease from the Arctic Mid-Ocean Ridge hydrothermal system.
Front Microbiol. 2023 Jun 19;14:1199085. doi: 10.3389/fmicb.2023.1199085. eCollection 2023.

本文引用的文献

1
The YΦ motif defines the structure-activity relationships of human 20S proteasome activators.
Nat Commun. 2022 Mar 9;13(1):1226. doi: 10.1038/s41467-022-28864-x.
2
Molecular Features of CA-074 pH-Dependent Inhibition of Cathepsin B.
Biochemistry. 2022 Feb 15;61(4):228-238. doi: 10.1021/acs.biochem.1c00684. Epub 2022 Feb 4.
4
In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET.
ACS Cent Sci. 2021 Oct 27;7(10):1638-1649. doi: 10.1021/acscentsci.1c00529. Epub 2021 Sep 2.
6
Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions.
ACS Chem Biol. 2021 Sep 17;16(9):1628-1643. doi: 10.1021/acschembio.1c00138. Epub 2021 Aug 20.
8
Covalent Small Molecule Immunomodulators Targeting the Protease Active Site.
J Med Chem. 2021 May 13;64(9):5291-5322. doi: 10.1021/acs.jmedchem.1c00172. Epub 2021 Apr 27.
9
Global Protease Activity Profiling Identifies HER2-Driven Proteolysis in Breast Cancer.
ACS Chem Biol. 2021 Apr 16;16(4):712-723. doi: 10.1021/acschembio.0c01000. Epub 2021 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验