Suppr超能文献

通过蛋白质N端的选择性酶标记对细胞蛋白水解进行全局分析。

Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini.

作者信息

Wiita Arun P, Seaman Julia E, Wells James A

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA.

出版信息

Methods Enzymol. 2014;544:327-58. doi: 10.1016/B978-0-12-417158-9.00013-3.

Abstract

Proteolysis is a critical modification leading to alteration of protein function with important outcomes in many biological processes. However, for the majority of proteases, we have an incomplete understanding of both cellular substrates and downstream effects. Here, we describe detailed protocols and applications for using the rationally engineered peptide ligase, subtiligase, to specifically label and capture protein N-termini generated by proteases either induced or added to complex biological samples. This method allows identification of the protein targets as well as their precise cleavage locations. This approach has revealed >8000 proteolytic sites in healthy and apoptotic cells including >1700 caspase cleavages. One can further determine substrate preferences through rate analysis with quantitative mass spectrometry, physiological substrate specificities, and even infer the identity of proteases operating in the cell. In this chapter, we also describe how this experimental method can be generalized to investigate proteolysis in any biological sample.

摘要

蛋白质水解是一种关键的修饰作用,可导致蛋白质功能改变,在许多生物过程中产生重要结果。然而,对于大多数蛋白酶而言,我们对其细胞底物和下游效应的了解并不完整。在此,我们描述了使用合理设计的肽连接酶枯草杆菌蛋白酶连接酶(subtiligase)的详细方案和应用,以特异性标记和捕获由诱导产生或添加到复杂生物样品中的蛋白酶所生成的蛋白质N端。该方法能够鉴定蛋白质靶点及其精确的切割位点。此方法已揭示了健康细胞和凋亡细胞中超过8000个蛋白水解位点,其中包括超过1700个半胱天冬酶切割位点。通过定量质谱分析的速率分析、生理底物特异性,甚至可以推断细胞中起作用的蛋白酶的身份,从而进一步确定底物偏好。在本章中,我们还描述了如何将这种实验方法推广到研究任何生物样品中的蛋白质水解。

相似文献

1
Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini.
Methods Enzymol. 2014;544:327-58. doi: 10.1016/B978-0-12-417158-9.00013-3.
2
N-Terminal Modification of Proteins with Subtiligase Specificity Variants.
Curr Protoc Chem Biol. 2020 Mar;12(1):e79. doi: 10.1002/cpch.79.
3
Comparative assessment of large-scale proteomic studies of apoptotic proteolysis.
ACS Chem Biol. 2009 Jun 19;4(6):401-8. doi: 10.1021/cb900082q.
4
The DegraBase: a database of proteolysis in healthy and apoptotic human cells.
Mol Cell Proteomics. 2013 Mar;12(3):813-24. doi: 10.1074/mcp.O112.024372. Epub 2012 Dec 20.
5
Spatially Resolved Tagging of Proteolytic Neo-N termini with Subtiligase-TM.
J Membr Biol. 2021 Apr;254(2):119-125. doi: 10.1007/s00232-021-00171-4. Epub 2021 Feb 18.
6
Protein TAILS: when termini tell tales of proteolysis and function.
Curr Opin Chem Biol. 2013 Feb;17(1):73-82. doi: 10.1016/j.cbpa.2012.11.025. Epub 2013 Jan 6.
7
Mapping proteolytic neo-N termini at the surface of living cells.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2018809118.
8
MS-driven protease substrate degradomics.
Proteomics. 2010 Mar;10(6):1284-96. doi: 10.1002/pmic.200900418.
9
Engineering peptide ligase specificity by proteomic identification of ligation sites.
Nat Chem Biol. 2018 Jan;14(1):50-57. doi: 10.1038/nchembio.2521. Epub 2017 Nov 20.
10
N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
Physiol Plant. 2012 May;145(1):5-17. doi: 10.1111/j.1399-3054.2011.01536.x. Epub 2011 Dec 7.

引用本文的文献

1
In-Depth Specificity Profiling of Endopeptidases Using Dedicated Mix-and-Split Synthetic Peptide Libraries and Mass Spectrometry.
Anal Chem. 2023 Aug 8;95(31):11621-11631. doi: 10.1021/acs.analchem.3c01215. Epub 2023 Jul 26.
2
Multiplex substrate profiling by mass spectrometry for proteases.
Methods Enzymol. 2023;682:375-411. doi: 10.1016/bs.mie.2022.09.009. Epub 2022 Dec 21.
3
N-Terminomics Strategies for Protease Substrates Profiling.
Molecules. 2021 Aug 3;26(15):4699. doi: 10.3390/molecules26154699.
4
The proteolytic landscape of cells exposed to non-lethal stresses is shaped by executioner caspases.
Cell Death Discov. 2021 Jun 19;7(1):164. doi: 10.1038/s41420-021-00539-4.
6
Defining the proteolytic landscape during enterovirus infection.
PLoS Pathog. 2020 Sep 30;16(9):e1008927. doi: 10.1371/journal.ppat.1008927. eCollection 2020 Sep.
7
Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25464-25475. doi: 10.1073/pnas.2009279117. Epub 2020 Sep 24.
8
An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome.
EMBO J. 2020 Oct 15;39(20):e105693. doi: 10.15252/embj.2020105693. Epub 2020 Sep 21.
10
Engineering peptide ligase specificity by proteomic identification of ligation sites.
Nat Chem Biol. 2018 Jan;14(1):50-57. doi: 10.1038/nchembio.2521. Epub 2017 Nov 20.

本文引用的文献

1
Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7594-9. doi: 10.1073/pnas.1405987111. Epub 2014 May 12.
2
Global cellular response to chemotherapy-induced apoptosis.
Elife. 2013 Oct 29;2:e01236. doi: 10.7554/eLife.01236.
3
The one hour yeast proteome.
Mol Cell Proteomics. 2014 Jan;13(1):339-47. doi: 10.1074/mcp.M113.034769. Epub 2013 Oct 19.
4
A blood-based proteomic classifier for the molecular characterization of pulmonary nodules.
Sci Transl Med. 2013 Oct 16;5(207):207ra142. doi: 10.1126/scitranslmed.3007013.
5
Proteolytic post-translational modification of proteins: proteomic tools and methodology.
Mol Cell Proteomics. 2013 Dec;12(12):3532-42. doi: 10.1074/mcp.M113.031310. Epub 2013 Jul 25.
6
Integrated proteomic analysis of post-translational modifications by serial enrichment.
Nat Methods. 2013 Jul;10(7):634-7. doi: 10.1038/nmeth.2518. Epub 2013 Jun 9.
7
Proteome-derived peptide libraries to study the substrate specificity profiles of carboxypeptidases.
Mol Cell Proteomics. 2013 Aug;12(8):2096-110. doi: 10.1074/mcp.M112.023234. Epub 2013 Apr 25.
8
Targeted quantitation of proteins by mass spectrometry.
Biochemistry. 2013 Jun 4;52(22):3797-806. doi: 10.1021/bi400110b. Epub 2013 Mar 27.
9
The DegraBase: a database of proteolysis in healthy and apoptotic human cells.
Mol Cell Proteomics. 2013 Mar;12(3):813-24. doi: 10.1074/mcp.O112.024372. Epub 2012 Dec 20.
10
Tools for label-free peptide quantification.
Mol Cell Proteomics. 2013 Mar;12(3):549-56. doi: 10.1074/mcp.R112.025163. Epub 2012 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验