Suppr超能文献

机器学习辅助确定材料的全局零温相图。

Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials.

机构信息

Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle, Germany.

CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.

出版信息

Adv Mater. 2023 Jun;35(22):e2210788. doi: 10.1002/adma.202210788. Epub 2023 Apr 7.

Abstract

Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.

摘要

最近,晶体图注意力神经网络作为预测热力学稳定性的卓越工具而出现。然而,它们的学习能力和可靠性取决于它们所接受的数据的数量和质量。以前的网络由于训练数据的不均匀性而表现出很强的偏差。在这里,设计了一个高质量的数据集,以在化学和晶体对称性空间中提供更好的平衡。使用该数据集训练的晶体图神经网络显示出前所未有的泛化准确性。这些网络被应用于进行机器学习辅助的高通量稳定材料搜索,涵盖 10 亿个候选者。通过这种方式,全局 T=0 K 相图的顶点数增加了 30%,并发现了超过 ≈150000 种化合物,它们与稳定性凸包的距离小于 50 meV 原子。然后,对这些发现的材料进行应用,确定了一些具有极端值的化合物的特性,如超导性、超硬度和巨大的间隙变形势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验