School of Mechanical Engineering, Vellore Institute of Technology, Chennai, Vandalur-Kelambakkam Road, Chennai, 600127, Tamil Nadu, India.
AAPS PharmSciTech. 2023 Mar 22;24(4):85. doi: 10.1208/s12249-023-02548-1.
A jet nebulizer sprays a fine mist or aerosol directly into the lungs to reduce inflammation, expand airways, and make breathing easier for respiratory patients. Asthma, COPD, emphysema, and cystic fibrosis are treated with jet nebulizers. They are chosen over other nebulizers for their shorter treatment time and wider medication compatibility. For mechanically ventilated patients, jet nebulizers humidify oxygen to provide bronchodilators, antibiotics, and other respiratory medications. Additionally, they treat pneumonia, bronchitis, and other lung infections. Aerosol therapy requires medical jet nebulizers. However, experiment setup is time-consuming and challenging to enhance smaller droplet output. The study is aimed at enhancing the nebulizer and process parameters using numerical simulation and comparing the results to experimental data from the Malvern Spraytec™ laser diffraction system. This numerical model improves nebulization knowledge and predicts process parameters that affect output. Ansys Fluent was used to analyze a Creo-designed jet nebulizer solid model. The Spraytec™ experimental method was utilized to characterize fluticasone propionate's aerosol output and build the best nebulizer. Laser diffraction and computational fluid dynamics (CFD) analysis measured the nebulizer aerosol output. Comparing particle size data between 2 and 5 μm. The results are similar, with a difference of 4.20%. Taguchi optimization found the optimal process parameter, and a conformation test enhanced the process parameter. The nebulizer generates 8.57% more fluticasone propionate at optimal particle size. The optimized nebulizer generates aerosols reliably and speeds up patient recovery.
射流雾化器将细雾或气溶胶直接喷入肺部,以减少炎症、扩张气道,使呼吸窘迫的患者更容易呼吸。哮喘、COPD、肺气肿和囊性纤维化都可以用射流雾化器治疗。与其他雾化器相比,它们的治疗时间更短,药物兼容性更广,因此被选中。对于机械通气的患者,射流雾化器可使氧气加湿,提供支气管扩张剂、抗生素和其他呼吸药物。此外,它们还可治疗肺炎、支气管炎和其他肺部感染。气溶胶治疗需要使用医用射流雾化器。然而,实验设置既耗时又具有挑战性,难以增强较小的液滴输出。本研究旨在使用数值模拟增强雾化器和工艺参数,并将结果与 Malvern Spraytec™ 激光衍射系统的实验数据进行比较。该数值模型提高了对雾化过程的认识,并预测了影响输出的工艺参数。使用 Ansys Fluent 对 Creo 设计的射流雾化器实体模型进行了分析。采用 Spraytec™ 实验方法对丙酸氟替卡松的气溶胶输出进行了表征,并建立了最佳的雾化器。激光衍射和计算流体动力学(CFD)分析测量了雾化器的气溶胶输出。比较了 2 到 5 微米之间的粒径数据。结果相似,差异为 4.20%。田口优化法找到了最佳的工艺参数,验证试验提高了工艺参数。优化后的雾化器可使丙酸氟替卡松的产量增加 8.57%。优化后的雾化器能可靠地产生气溶胶,加速患者康复。