Zhou Tian, Yuan Yu, Xiao Luyi, Ding Wei, Wang Yong, Lv Li-Ping
School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, China.
Nanomaterials (Basel). 2024 Aug 26;14(17):1388. doi: 10.3390/nano14171388.
Redox-active porous organic polymers (POPs) demonstrate significant potential in supercapacitors. However, their intrinsic low electrical conductivity and stacking tendencies often lead to low utilization rates of redox-active sites within their structural units. Herein, polyimide POPs (donated as PMTA) are synthesized in situ on multi-walled carbon nanotubes (MWCNTs) from tetramino-benzoquinone (TABQ) and 1,4,5,8-naphthalene tetracarboxylic dianhydride (PMDA) monomers. The strong π-π stacking interactions drive the PMTA POPs and the MWCNTs together to form a PMTA/MWCNT composite. With the assistance of MWCNTs, the stacking issue and low conductivity of PMTA POPs are well addressed, leading to the obvious activation and enhanced utilization of the redox-active groups in the PMTA POPs. PMTA/MWCNT then achieves a high capacitance of 375.2 F g at 1 A g as compared to the pristine PMTA POPs (5.7 F g) and excellent cycling stability of 89.7% after 8000 cycles at 5 A g. Cyclic voltammetry (CV) and in situ Fourier-Transform Infrared (FT-IR) results reveal that the electrode reactions involve the reversible structural evolution of carbonyl groups, which are activated to provide rich pseudocapacitance. Asymmetric supercapacitors (ASCs) assembled with PMTA/MWCNTs and activated carbon (AC) offer a high energy density of 15.4 Wh kg at 980.4 W kg and maintain a capacitance retention of 125% after 10,000 cycles at 5 A g, indicating their good potential for practical applications.
氧化还原活性多孔有机聚合物(POPs)在超级电容器中显示出巨大潜力。然而,其固有的低电导率和堆积倾向常常导致其结构单元内氧化还原活性位点的利用率较低。在此,聚酰亚胺POPs(命名为PMTA)由四氨基苯醌(TABQ)和1,4,5,8-萘四甲酸二酐(PMDA)单体在多壁碳纳米管(MWCNTs)上原位合成。强烈的π-π堆积相互作用促使PMTA POPs与MWCNTs结合在一起,形成PMTA/MWCNT复合材料。在MWCNTs的辅助下,PMTA POPs的堆积问题和低电导率得到了很好的解决,从而使PMTA POPs中氧化还原活性基团明显活化并提高了利用率。与原始的PMTA POPs(5.7 F g)相比,PMTA/MWCNT在1 A g时实现了375.2 F g的高电容,并且在5 A g下循环8000次后具有89.7%的优异循环稳定性。循环伏安法(CV)和原位傅里叶变换红外光谱(FT-IR)结果表明,电极反应涉及羰基的可逆结构演变,羰基被活化以提供丰富的赝电容。由PMTA/MWCNTs和活性炭(AC)组装的不对称超级电容器(ASCs)在980.4 W kg时提供15.4 Wh kg的高能量密度,并且在5 A g下循环10000次后电容保持率为125%,表明它们具有良好的实际应用潜力。