Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, 40536, USA.
Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, 23220, USA.
BMC Bioinformatics. 2023 Mar 22;24(1):108. doi: 10.1186/s12859-023-05211-5.
Stable Isotope Resolved Metabolomics (SIRM) is a new biological approach that uses stable isotope tracers such as uniformly [Formula: see text]-enriched glucose ([Formula: see text]-Glc) to trace metabolic pathways or networks at the atomic level in complex biological systems. Non-steady-state kinetic modeling based on SIRM data uses sets of simultaneous ordinary differential equations (ODEs) to quantitatively characterize the dynamic behavior of metabolic networks. It has been increasingly used to understand the regulation of normal metabolism and dysregulation in the development of diseases. However, fitting a kinetic model is challenging because there are usually multiple sets of parameter values that fit the data equally well, especially for large-scale kinetic models. In addition, there is a lack of statistically rigorous methods to compare kinetic model parameters between different experimental groups.
We propose a new Bayesian statistical framework to enhance parameter estimation and hypothesis testing for non-steady-state kinetic modeling of SIRM data. For estimating kinetic model parameters, we leverage the prior distribution not only to allow incorporation of experts' knowledge but also to provide robust parameter estimation. We also introduce a shrinkage approach for borrowing information across the ensemble of metabolites to stably estimate the variance of an individual isotopomer. In addition, we use a component-wise adaptive Metropolis algorithm with delayed rejection to perform efficient Monte Carlo sampling of the posterior distribution over high-dimensional parameter space. For comparing kinetic model parameters between experimental groups, we propose a new reparameterization method that converts the complex hypothesis testing problem into a more tractable parameter estimation problem. We also propose an inference procedure based on credible interval and credible value. Our method is freely available for academic use at https://github.com/xuzhang0131/MCMCFlux .
Our new Bayesian framework provides robust estimation of kinetic model parameters and enables rigorous comparison of model parameters between experimental groups. Simulation studies and application to a lung cancer study demonstrate that our framework performs well for non-steady-state kinetic modeling of SIRM data.
稳定同位素分辨代谢组学(SIRM)是一种新的生物学方法,它使用稳定同位素示踪剂,如均一[Formula: see text]-富集葡萄糖([Formula: see text]-Glc),在复杂的生物系统中从原子水平上追踪代谢途径或网络。基于 SIRM 数据的非稳态动力学建模使用一组同时的常微分方程(ODE)来定量描述代谢网络的动态行为。它已越来越多地用于了解正常代谢的调节以及疾病发展中的失调。然而,拟合动力学模型具有挑战性,因为通常有多个参数值集可以同样好地拟合数据,特别是对于大规模动力学模型。此外,缺乏统计上严格的方法来比较不同实验组之间的动力学模型参数。
我们提出了一种新的贝叶斯统计框架,以增强 SIRM 数据非稳态动力学建模的参数估计和假设检验。为了估计动力学模型参数,我们不仅利用先验分布来允许纳入专家知识,还提供了稳健的参数估计。我们还引入了一种收缩方法,用于在代谢物集合中借贷信息,以稳定地估计单个同位素的方差。此外,我们使用基于组件的自适应 Metropolis 算法与延迟拒绝来有效地对高维参数空间中的后验分布进行蒙特卡罗抽样。为了比较实验组之间的动力学模型参数,我们提出了一种新的重参数化方法,将复杂的假设检验问题转换为更易于处理的参数估计问题。我们还提出了一种基于置信区间和置信值的推断程序。我们的方法可在 https://github.com/xuzhang0131/MCMCFlux 上免费供学术使用。
我们的新贝叶斯框架提供了动力学模型参数的稳健估计,并能够在实验组之间进行严格的模型参数比较。模拟研究和应用于肺癌研究表明,我们的框架在 SIRM 数据的非稳态动力学建模中表现良好。