Suppr超能文献

基于 CT 的深度学习模型预测 DNA 错配修复缺陷型结直肠癌:一项诊断研究。

CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study.

机构信息

Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.

出版信息

J Transl Med. 2023 Mar 22;21(1):214. doi: 10.1186/s12967-023-04023-8.

Abstract

BACKGROUND

Stratification of DNA mismatch repair (MMR) status in patients with colorectal cancer (CRC) enables individual clinical treatment decision making. The present study aimed to develop and validate a deep learning (DL) model based on the pre-treatment CT images for predicting MMR status in CRC.

METHODS

1812 eligible participants (training cohort: n = 1124; internal validation cohort: n = 482; external validation cohort: n = 206) with CRC were enrolled from two institutions. All pretherapeutic CT images from three dimensions were trained by the ResNet101, then integrated by Gaussian process regression (GPR) to develop a full-automatic DL model for MMR status prediction. The predictive performance of the DL model was evaluated using the area under the receiver operating characteristic curve (AUC) and then tested in the internal and external validation cohorts. Additionally, the participants from institution 1 were sub-grouped by various clinical factors for subgroup analysis, then the predictive performance of the DL model for identifying MMR status between participants in different groups were compared.

RESULTS

The full-automatic DL model was established in the training cohort to stratify the MMR status, which presented promising discriminative ability with the AUCs of 0.986 (95% CI 0.971-1.000) in the internal validation cohort and 0.915 (95% CI 0.870-0.960) in the external validation cohort. In addition, the subgroup analysis based on the thickness of CT images, clinical T and N stages, gender, the longest diameter, and the location of tumors revealed that the DL model showed similar satisfying prediction performance.

CONCLUSIONS

The DL model may potentially serve as a noninvasive tool to facilitate the pre-treatment individualized prediction of MMR status in patients with CRC, which could promote the personalized clinical-making decision.

摘要

背景

对结直肠癌(CRC)患者的 DNA 错配修复(MMR)状态进行分层,能够实现个体化的临床治疗决策。本研究旨在开发和验证一种基于 CRC 患者治疗前 CT 图像的深度学习(DL)模型,用于预测 MMR 状态。

方法

本研究共纳入来自两个机构的 1812 名符合条件的 CRC 患者(训练队列:n=1124;内部验证队列:n=482;外部验证队列:n=206)。使用 ResNet101 对所有三维治疗前 CT 图像进行训练,然后通过高斯过程回归(GPR)进行整合,开发用于 MMR 状态预测的全自动 DL 模型。使用受试者工作特征曲线下面积(AUC)评估 DL 模型的预测性能,然后在内部和外部验证队列中进行测试。此外,根据各种临床因素对来自机构 1 的患者进行亚组分析,然后比较 DL 模型对不同亚组患者 MMR 状态的识别能力。

结果

在训练队列中建立了全自动 DL 模型,用于分层 MMR 状态,该模型在内部验证队列中的 AUC 为 0.986(95%CI 0.971-1.000),在外部验证队列中的 AUC 为 0.915(95%CI 0.870-0.960),表现出有前景的鉴别能力。此外,基于 CT 图像的厚度、临床 T 和 N 分期、性别、最长直径和肿瘤位置的亚组分析表明,DL 模型具有相似的令人满意的预测性能。

结论

DL 模型可能作为一种非侵入性工具,有助于对 CRC 患者治疗前 MMR 状态进行个体化预测,从而促进个性化临床决策的制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/165c/10035255/00deb522138d/12967_2023_4023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验