Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States.
Biochemistry. 2023 Oct 3;62(19):2878-2892. doi: 10.1021/acs.biochem.3c00373. Epub 2023 Sep 12.
Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. , an important foodborne pathogen, uses an system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of in infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in . We identified a 6-mer AIP signal in supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in . We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type . The lead agonist and antagonist in were also capable of antagonizing signaling in the related pathogen , further extending their utility and suggesting different mechanisms of activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in .
细菌可以使用化学信号来评估其在群体感应(QS)过程中的局部种群密度。许多这些细菌是常见的病原体,包括革兰氏阳性菌,它们利用由大环自动诱导肽(AIP)信号调节的 QS 系统。作为一种重要的食源性病原体,使用 系统来调节多种毒力因子和生物膜形成,但关于 在 感染及其在各种环境中的持续存在中的具体作用知之甚少。在此,我们报告了合成肽工具,这些工具将使我们能够研究 中的 QS。我们在 上清液中鉴定出一种 6 -mer AIP 信号,并选择它作为支架,围绕该支架设计和合成了一系列非天然 AIP 模拟物。这些肽在基于细胞的 报告基因测定中进行了评估,以产生基于 AIP 的激动剂和拮抗剂在 中的结构-活性关系。我们发现了与天然 AIP 相比具有增强效力的合成激动剂,以及一种能够将 活性降低到基础水平的合成拮抗剂。值得注意的是,后者肽能够将生物膜形成减少超过 90%,这是野生型 中第一个合成 QS 调节剂。在 中,先导 激动剂和拮抗剂也能够拮抗相关病原体 的信号转导,进一步扩展了它们的用途,并表明这两种病原体中 激活的不同机制。这项研究代表了应用化学方法调节 QS 及其伴随的毒力结果在 中的重要的第一步。