Suppr超能文献

基于形状的特征预测升主动脉瘤生长能力的评估。

Assessment of shape-based features ability to predict the ascending aortic aneurysm growth.

作者信息

Geronzi Leonardo, Haigron Pascal, Martinez Antonio, Yan Kexin, Rochette Michel, Bel-Brunon Aline, Porterie Jean, Lin Siyu, Marin-Castrillon Diana Marcela, Lalande Alain, Bouchot Olivier, Daniel Morgan, Escrig Pierre, Tomasi Jacques, Valentini Pier Paolo, Biancolini Marco Evangelos

机构信息

Department of Enterprise Engineering "Mario Lucertini", University of Rome Tor Vergata, Rome, Italy.

Ansys France, Villeurbanne, France.

出版信息

Front Physiol. 2023 Mar 6;14:1125931. doi: 10.3389/fphys.2023.1125931. eCollection 2023.

Abstract

The current guidelines for the ascending aortic aneurysm (AsAA) treatment recommend surgery mainly according to the maximum diameter assessment. This criterion has already proven to be often inefficient in identifying patients at high risk of aneurysm growth and rupture. In this study, we propose a method to compute a set of local shape features that, in addition to the maximum diameter , are intended to improve the classification performances for the ascending aortic aneurysm growth risk assessment. Apart from , these are the ratio between and the length of the ascending aorta centerline, the ratio between the length of the external and the internal lines and the tortuosity . 50 patients with two 3D acquisitions at least 6 months apart were segmented and the growth rate (GR) with the shape features related to the first exam computed. The correlation between them has been investigated. After, the dataset was divided into two classes according to the growth rate value. We used six different classifiers with input data exclusively from the first exam to predict the class to which each patient belonged. A first classification was performed using only and a second with all the shape features together. The performances have been evaluated by computing accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUROC) and positive (negative) likelihood ratio LHR+ (LHR-). A positive correlation was observed between growth rate and ( = 0.511, = 1.3e-4) and between GR and ( = 0.472, = 2.7e-4). Overall, the classifiers based on the four metrics outperformed the same ones based only on . Among the diameter-based classifiers, k-nearest neighbours (KNN) reported the best accuracy (86%), sensitivity (55.6%), AUROC (0.74), LHR+ (7.62) and LHR- (0.48). Concerning the classifiers based on the four shape features, we obtained the best accuracy (94%), sensitivity (66.7%), specificity (100%), AUROC (0.94), LHR+ (+) and LHR- (0.33) with support vector machine (SVM). This demonstrates how automatic shape features detection combined with risk classification criteria could be crucial in planning the follow-up of patients with ascending aortic aneurysm and in predicting the possible dangerous progression of the disease.

摘要

目前升主动脉瘤(AsAA)治疗指南主要依据最大直径评估来推荐手术。这一标准已被证明在识别动脉瘤生长和破裂高风险患者方面常常效率低下。在本研究中,我们提出一种方法来计算一组局部形状特征,除最大直径外,这些特征旨在提高升主动脉瘤生长风险评估的分类性能。除此之外,这些特征包括[具体特征1]与升主动脉中心线长度的比值、外线与内线长度的比值以及弯曲度。对50例患者进行了至少间隔6个月的两次三维采集,并对与首次检查相关的形状特征计算生长率(GR)。研究了它们之间的相关性。之后,根据生长率值将数据集分为两类。我们使用六种不同的分类器,输入数据仅来自首次检查,以预测每位患者所属的类别。第一次分类仅使用[具体特征1]进行,第二次使用所有形状特征一起进行。通过计算准确率、灵敏度、特异性、受试者操作特征曲线下面积(AUROC)以及阳性(阴性)似然比LHR +(LHR -)来评估性能。观察到生长率与[具体特征1]之间存在正相关(r = 0.511,p = 1.3e - 4)以及GR与[具体特征2]之间存在正相关(r = 0.472,p = 2.7e - 4)。总体而言,基于这四个指标的分类器优于仅基于[具体特征1]的分类器。在基于直径的分类器中,k近邻(KNN)的准确率最高(86%)、灵敏度(55.6%)、AUROC(0.74)、LHR +(7.62)和LHR -(0.48)。关于基于四个形状特征的分类器,使用支持向量机(SVM)时我们获得了最佳的准确率(94%)、灵敏度(66.7%)、特异性(100%)、AUROC(0.94)、LHR +(+)和LHR -(0.33)。这表明自动形状特征检测与风险分类标准相结合在规划升主动脉瘤患者的随访以及预测疾病可能的危险进展方面可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8693/10025384/0ceceb4ff657/fphys-14-1125931-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验