Suppr超能文献

基于多物理特征和血流动力学建模的深度学习用于腹主动脉瘤生长预测

Deep Learning on Multiphysical Features and Hemodynamic Modeling for Abdominal Aortic Aneurysm Growth Prediction.

作者信息

Kim Sekeun, Jiang Zhenxiang, Zambrano Byron A, Jang Yeonggul, Baek Seungik, Yoo Sunkook, Chang Hyuk-Jae

出版信息

IEEE Trans Med Imaging. 2023 Jan;42(1):196-208. doi: 10.1109/TMI.2022.3206142. Epub 2022 Dec 29.

Abstract

Prediction of abdominal aortic aneurysm (AAA) growth is of essential importance for the early treatment and surgical intervention of AAA. Capturing key features of vascular growth, such as blood flow and intraluminal thrombus (ILT) accumulation play a crucial role in uncovering the intricated mechanism of vascular adaptation, which can ultimately enhance AAA growth prediction capabilities. However, local correlations between hemodynamic metrics, biological and morphological characteristics, and AAA growth rates present high inter-patient variability that results in that the temporal-spatial biochemical and mechanical processes are still not fully understood. Hence, this study aims to integrate the physics-based knowledge with deep learning with a patch-based convolutional neural network (CNN) approach by incorporating important multiphysical features relating to its pathogenesis for validating its impact on AAA growth prediction. For this task, we observe that the unstructured multiphysical features cannot be directly employed in the kernel-based CNN. To tackle this issue, we propose a parameterization of features to leverage the spatio-temporal relations between multiphysical features. The proposed architecture was tested on different combinations of four features including radius, intraluminal thrombus thickness, time-average wall shear stress, and growth rate from 54 patients with 5-fold cross-validation with two metrics, a root mean squared error (RMSE) and relative error (RE). We conduct extensive experiments on AAA patients, the results show the effect of leveraging multiphysical features and demonstrate the superiority of the presented architecture to previous state-of-the-art methods in AAA growth prediction.

摘要

腹主动脉瘤(AAA)生长的预测对于AAA的早期治疗和手术干预至关重要。捕捉血管生长的关键特征,如血流和腔内血栓(ILT)积聚,在揭示血管适应性的复杂机制中起着关键作用,这最终可以提高AAA生长预测能力。然而,血流动力学指标、生物学和形态学特征与AAA生长速率之间的局部相关性在患者之间存在很大差异,导致时空生化和机械过程仍未完全理解。因此,本研究旨在通过基于补丁的卷积神经网络(CNN)方法,将基于物理的知识与深度学习相结合,纳入与其发病机制相关的重要多物理特征,以验证其对AAA生长预测的影响。对于这项任务,我们观察到非结构化的多物理特征不能直接应用于基于内核的CNN。为了解决这个问题,我们提出了一种特征参数化方法,以利用多物理特征之间的时空关系。所提出的架构在包括半径、腔内血栓厚度、时间平均壁面剪应力和生长速率在内的四个特征的不同组合上进行了测试,这些特征来自54名患者,并采用均方根误差(RMSE)和相对误差(RE)这两个指标进行了5折交叉验证。我们对AAA患者进行了广泛的实验,结果显示了利用多物理特征的效果,并证明了所提出的架构在AAA生长预测方面优于先前的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验