Suppr超能文献

利用三结 III-V 光电阴极在毫克级规模上进行太阳能驱动氨转化的人工叶片。

Artificial Leaf for Solar-Driven Ammonia Conversion at Milligram-Scale Using Triple Junction III-V Photoelectrode.

机构信息

KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

出版信息

Adv Sci (Weinh). 2023 May;10(14):e2205808. doi: 10.1002/advs.202205808. Epub 2023 Mar 22.

Abstract

Developing a green and energy-saving alternative to the traditional Haber-Bosch process for converting nitrogen into ammonia is urgently needed. Imitating from biological nitrogen fixation and photosynthesis processes, this work develops a monolithic artificial leaf based on triple junction (3J) InGaP/GaAs/Ge cell for solar-driven ammonia conversion under ambient conditions. A gold layer serves as the catalytic site for nitrogen fixation with photogenerated electrons. The Au/Ti/3J InGaP/GaAs/Ge photoelectrochemical (PEC) device achieves high ammonia production rates and Faradaic efficiencies in a two-electrode system without applying external potential. For example, at 0.2 sunlight intensity, the solar-to-ammonia (STA) conversion efficiency reaches 1.11% and the corresponding Faradaic efficiency is up to 28.9%. By integrating a Ni foil on the anode side for the oxygen evolution reaction (OER), the monolithic artificial leaf exhibits an ammonia production rate of 8.5 µg cm h at 1.5 sunlight intensity. Additionally, a 3 × 3 cm unassisted wireless PEC device is fabricated that produces 1.0039 mg of ammonia in the 36-h durability test. Thus, the new artificial leaf can successfully and directly convert solar energy into chemical energy and generate useful products in an environmentally friendly approach.

摘要

开发一种绿色节能的替代传统 Haber-Bosch 工艺的方法,将氮气转化为氨气,这是迫切需要的。本工作受生物固氮和光合作用过程的启发,开发了一种基于三结(3J)InGaP/GaAs/Ge 电池的整体式人工叶片,用于在环境条件下进行太阳能驱动的氨转化。金层作为氮固定的催化位点,利用光生电子进行反应。在没有施加外部电势的情况下,Au/Ti/3J InGaP/GaAs/Ge 光电化学(PEC)器件在两电极系统中实现了高的氨产率和法拉第效率。例如,在 0.2 太阳光强度下,太阳能到氨(STA)的转换效率达到 1.11%,相应的法拉第效率高达 28.9%。通过在阳极侧集成镍箔用于析氧反应(OER),整体式人工叶片在 1.5 太阳光强度下的氨产率达到 8.5 µg cm h。此外,还制备了一个 3×3 cm 的无辅助无线 PEC 器件,在 36 小时的耐久性测试中产生了 1.0039 mg 的氨。因此,新的人工叶片可以成功地直接将太阳能转化为化学能,并以环保的方式生成有用的产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/10190632/359625e35d6c/ADVS-10-2205808-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验