Fu Hui-Chun, Varadhan Purushothaman, Lin Chun-Ho, He Jr-Hau
Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, (KAUST), Thuwal, 23955-6900, Saudi Arabia.
KAUST Solar Center, KAUST, Thuwal, 23955-6900, Saudi Arabia.
Nat Commun. 2020 Aug 6;11(1):3930. doi: 10.1038/s41467-020-17660-0.
Converting sunlight into a storable form of energy by spontaneous water splitting is of great interest but the difficulty in simultaneous management of optical, electrical, and catalytic properties has limited the efficiency of photoelectrochemical (PEC) devices. Herein, we implemented a decoupling scheme of light harvesting and electrocatalysis by employing a back-buried junction (BBJ) PEC cell design, which enables >95% front side light-harvesting, whereas the electrochemical reaction in conjunction with carrier separation/transport/collection occurs on the back side of the PEC cell. The resultant silicon BBJ-PEC half-cell produces a current density of 40.51 mA cm for hydrogen evolution by minimizing optical, electrical, and catalytic losses (as low as 6.11, 1.76, and 1.67 mA cm, respectively). Monolithic fabrication also enables three BBJ-PEC cells to be connected in series as a single module, enabling unassisted solar water-splitting with a solar-to-hydrogen conversion efficiency of 15.62% and a hydrogen generation rate of 240 μg cm h.
通过自发水分解将阳光转化为可储存的能量形式备受关注,但同时管理光学、电学和催化性能的困难限制了光电化学(PEC)装置的效率。在此,我们采用背埋结(BBJ)PEC电池设计实现了光捕获和电催化的解耦方案,该设计可实现>95%的正面光捕获,而电化学反应与载流子分离/传输/收集则发生在PEC电池的背面。由此产生的硅BBJ-PEC半电池通过将光学、电学和催化损失(分别低至6.11、1.76和1.67 mA cm)降至最低,产生了40.51 mA cm的析氢电流密度。单片制造还使得三个BBJ-PEC电池能够串联连接成一个模块,实现无辅助太阳能水分解,太阳能到氢气的转换效率为15.62%,氢气生成速率为240 μg cm h。