Suppr超能文献

预测抗菌药物耐药性的挑战。

Challenges in Forecasting Antimicrobial Resistance.

出版信息

Emerg Infect Dis. 2023 Apr;29(4):679-685. doi: 10.3201/eid2904.221552.

Abstract

Antimicrobial resistance is a major threat to human health. Since the 2000s, computational tools for predicting infectious diseases have been greatly advanced; however, efforts to develop real-time forecasting models for antimicrobial-resistant organisms (AMROs) have been absent. In this perspective, we discuss the utility of AMRO forecasting at different scales, highlight the challenges in this field, and suggest future research priorities. We also discuss challenges in scientific understanding, access to high-quality data, model calibration, and implementation and evaluation of forecasting models. We further highlight the need to initiate research on AMRO forecasting using currently available data and resources to galvanize the research community and address initial practical questions.

摘要

抗菌药物耐药性是对人类健康的重大威胁。自 21 世纪以来,用于预测传染病的计算工具得到了极大的发展;然而,开发针对抗菌药物耐药菌(AMRO)的实时预测模型的努力却一直付诸阙如。在这篇观点文章中,我们讨论了在不同尺度上进行 AMRO 预测的效用,强调了该领域的挑战,并提出了未来的研究重点。我们还讨论了在科学理解、高质量数据获取、模型校准以及预测模型的实施和评估方面的挑战。我们进一步强调,需要利用现有数据和资源开展针对 AMRO 预测的研究,以激发研究界的活力并解决初步的实际问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa4/10045679/5be7668e34ec/22-1552-F.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验