Suppr超能文献

基于微生物基因组向量化的肺炎克雷伯菌新毒力特征发现与风险评估

De novo virulence feature discovery and risk assessment in Klebsiella pneumoniae based on microbial genome vectorization.

作者信息

Beck Kristen L, Agarwal Akshay, Laufer Halpin Alison, McDonald L Clifford, McKay Susannah L, Kent Alyssa G, Kaufman James H, Mukherjee Vandana, Elkins Christopher A, Seabolt Edward

机构信息

AI and Cognitive Software, IBM Research, San Jose, CA, USA.

Division of Healthcare Quality Promotion, Centers for Disease Control, Atlanta, GA, USA.

出版信息

Commun Biol. 2025 Apr 17;8(1):623. doi: 10.1038/s42003-025-07678-9.

Abstract

Bacterial pathogenicity has traditionally focused on gene-level content with experimentally confirmed functional properties. Hence, significant inferences are made based on similarity to known pathotypes and DNA-based genomic subtyping for risk. Herein, we achieved de novo prediction of human virulence in Klebsiella pneumoniae by expanding known virulence genes with spatially proximal gene discoveries linked by functional domain architectures across all prokaryotes. This approach identified gene ontology functions not typically associated with virulence sensu stricto. By leveraging machine learning models with these expanded discoveries, public genomes were assessed for virulence prediction using categorizations derived from isolation sources captured in available metadata. Performance for de novo strain-level virulence prediction achieved 0.81 F1-Score. Virulence predictions using expanded "discovered" functional genetic content were superior to that restricted to extant virulence database content. Additionally, this approach highlighted the incongruence in relying on traditional phylogenetic subtyping for categorical inferences. Our approach represents an improved deconstruction of genome-scale datasets for functional predictions and risk assessment intended to advance public health surveillance of emerging pathogens.

摘要

传统上,细菌致病性研究主要关注具有经实验证实的功能特性的基因层面内容。因此,基于与已知致病型的相似性以及基于DNA的基因组亚型分析来进行风险的重要推断。在此,我们通过将已知毒力基因与所有原核生物中通过功能域结构相连的空间近端基因发现相结合,实现了对肺炎克雷伯菌人类毒力的从头预测。这种方法确定了通常与狭义毒力不相关的基因本体功能。通过利用机器学习模型和这些扩展的发现,利用从现有元数据中捕获的分离源分类对公共基因组进行毒力预测评估。从头进行菌株水平毒力预测的性能达到了0.81的F1分数。使用扩展的“发现”功能遗传内容进行的毒力预测优于仅限于现有毒力数据库内容的预测。此外,这种方法突出了依靠传统系统发育亚型进行分类推断时的不一致性。我们的方法代表了一种改进的基因组规模数据集解构方法,用于功能预测和风险评估,旨在推进对新兴病原体的公共卫生监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e122/12006392/2b7c890433d1/42003_2025_7678_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验