Suppr超能文献

扩大数学建模在医疗保健流行病学以及感染预防与控制中的应用。

Expanding the use of mathematical modeling in healthcare epidemiology and infection prevention and control.

作者信息

Grant Rebecca, Rubin Michael, Abbas Mohamed, Pittet Didier, Srinivasan Arjun, Jernigan John A, Bell Michael, Samore Matthew, Harbarth Stephan, Slayton Rachel B

机构信息

Infection Control Programme and WHO Collaborating Centre for Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.

Division of Epidemiology, University of Utah School Medicine, Salt Lake City, UT, USA.

出版信息

Infect Control Hosp Epidemiol. 2024 Aug;45(8):930-935. doi: 10.1017/ice.2024.97. Epub 2024 Sep 4.

Abstract

During the coronavirus disease 2019 pandemic, mathematical modeling has been widely used to understand epidemiological burden, trends, and transmission dynamics, to facilitate policy decisions, and, to a lesser extent, to evaluate infection prevention and control (IPC) measures. This review highlights the added value of using conventional epidemiology and modeling approaches to address the complexity of healthcare-associated infections (HAI) and antimicrobial resistance. It demonstrates how epidemiological surveillance data and modeling can be used to infer transmission dynamics in healthcare settings and to forecast healthcare impact, how modeling can be used to improve the validity of interpretation of epidemiological surveillance data, how modeling can be used to estimate the impact of IPC interventions, and how modeling can be used to guide IPC and antimicrobial treatment and stewardship decision-making. There are several priority areas for expanding the use of modeling in healthcare epidemiology and IPC. Importantly, modeling should be viewed as complementary to conventional healthcare epidemiological approaches, and this requires collaboration and active coordination between IPC, healthcare epidemiology, and mathematical modeling groups.

摘要

在2019年冠状病毒病大流行期间,数学建模已被广泛用于了解流行病学负担、趋势和传播动态,以促进政策决策,并且在较小程度上用于评估感染预防与控制(IPC)措施。本综述强调了使用传统流行病学和建模方法来应对医疗保健相关感染(HAI)和抗菌药物耐药性复杂性的附加价值。它展示了流行病学监测数据和建模如何用于推断医疗机构中的传播动态并预测对医疗保健的影响,建模如何用于提高对流行病学监测数据解释的有效性,建模如何用于估计IPC干预措施的影响,以及建模如何用于指导IPC和抗菌治疗及管理决策。在医疗保健流行病学和IPC中扩大建模应用有几个优先领域。重要的是,建模应被视为对传统医疗保健流行病学方法的补充,这需要IPC、医疗保健流行病学和数学建模团队之间的合作与积极协调。

相似文献

3
[Not Available].[无可用内容]。
Sante Publique. 2024;36(6):109-120. doi: 10.3917/spub.246.0109.
10
Controversies and clinical unknowns in the use of PARP inhibitors in ovarian cancer.PARP抑制剂在卵巢癌治疗中的争议与临床未知因素
Ther Adv Med Oncol. 2025 Jun 14;17:17588359251343973. doi: 10.1177/17588359251343973. eCollection 2025.

本文引用的文献

5
Public health impact of the U.S. Scenario Modeling Hub.美国情景建模中心对公共卫生的影响。
Epidemics. 2023 Sep;44:100705. doi: 10.1016/j.epidem.2023.100705. Epub 2023 Jul 18.
6
Challenges in Forecasting Antimicrobial Resistance.预测抗菌药物耐药性的挑战。
Emerg Infect Dis. 2023 Apr;29(4):679-685. doi: 10.3201/eid2904.221552.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验