Grant Rebecca, Rubin Michael, Abbas Mohamed, Pittet Didier, Srinivasan Arjun, Jernigan John A, Bell Michael, Samore Matthew, Harbarth Stephan, Slayton Rachel B
Infection Control Programme and WHO Collaborating Centre for Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
Division of Epidemiology, University of Utah School Medicine, Salt Lake City, UT, USA.
Infect Control Hosp Epidemiol. 2024 Aug;45(8):930-935. doi: 10.1017/ice.2024.97. Epub 2024 Sep 4.
During the coronavirus disease 2019 pandemic, mathematical modeling has been widely used to understand epidemiological burden, trends, and transmission dynamics, to facilitate policy decisions, and, to a lesser extent, to evaluate infection prevention and control (IPC) measures. This review highlights the added value of using conventional epidemiology and modeling approaches to address the complexity of healthcare-associated infections (HAI) and antimicrobial resistance. It demonstrates how epidemiological surveillance data and modeling can be used to infer transmission dynamics in healthcare settings and to forecast healthcare impact, how modeling can be used to improve the validity of interpretation of epidemiological surveillance data, how modeling can be used to estimate the impact of IPC interventions, and how modeling can be used to guide IPC and antimicrobial treatment and stewardship decision-making. There are several priority areas for expanding the use of modeling in healthcare epidemiology and IPC. Importantly, modeling should be viewed as complementary to conventional healthcare epidemiological approaches, and this requires collaboration and active coordination between IPC, healthcare epidemiology, and mathematical modeling groups.
在2019年冠状病毒病大流行期间,数学建模已被广泛用于了解流行病学负担、趋势和传播动态,以促进政策决策,并且在较小程度上用于评估感染预防与控制(IPC)措施。本综述强调了使用传统流行病学和建模方法来应对医疗保健相关感染(HAI)和抗菌药物耐药性复杂性的附加价值。它展示了流行病学监测数据和建模如何用于推断医疗机构中的传播动态并预测对医疗保健的影响,建模如何用于提高对流行病学监测数据解释的有效性,建模如何用于估计IPC干预措施的影响,以及建模如何用于指导IPC和抗菌治疗及管理决策。在医疗保健流行病学和IPC中扩大建模应用有几个优先领域。重要的是,建模应被视为对传统医疗保健流行病学方法的补充,这需要IPC、医疗保健流行病学和数学建模团队之间的合作与积极协调。