Suppr超能文献

基于自动深度学习的脊柱骨盆冠状面和矢状面排列的评估。

Automatic deep learning-based assessment of spinopelvic coronal and sagittal alignment.

机构信息

Department of Radiology, Institute for Locomotion, Sainte-Marguerite Hospital, APHM, 13009 Marseille, France.

Milvue, 75014 Paris, France.

出版信息

Diagn Interv Imaging. 2023 Jul-Aug;104(7-8):343-350. doi: 10.1016/j.diii.2023.03.003. Epub 2023 Mar 21.

Abstract

PURPOSE

The purpose of this study was to evaluate an artificial intelligence (AI) solution for estimating coronal and sagittal spinopelvic alignment on conventional uniplanar two-dimensional whole-spine radiograph.

MATERIAL AND METHODS

This retrospective observational study included 100 patients (35 men, 65 women) with a median age of 14 years (IQR: 13, 15.25; age range: 3-64 years) who underwent conventional uniplanar two-dimensional whole-spine radiograph in standing position between January and July 2022. Ten most commonly used spinopelvic coronal and sagittal parameters were retrospectively measured without AI by a junior radiologist and approved or adjusted by a senior musculoskeletal radiologist to reach final measurements. Final measurements were used as the ground truth to assess AI performance for each parameter. AI performances were estimated using mean absolute errors (MAE), intraclass correlation coefficient (ICCs), and accuracy for selected clinically relevant thresholds. Readers visually classified AI outputs to assess reliability at a patient-level.

RESULTS

AI solution showed excellent consistency without bias in coronal (ICCs ≥ 0.95; MAE ≤ 2.9° or 1.97 mm) and sagittal (ICCs ≥ 0.85; MAE ≤ 4.4° or 2.7 mm) spinopelvic evaluation, except for kyphosis (ICC = 0.58; MAE = 8.7°). AI accuracy to classify low Cobb angle, severe scoliosis or frontal pelvic asymmetry was 91% (95% CI: 85-96), 99% (95% CI: 97-100) and 94% (95% CI: 89-98), respectively. Overall, AI provided reliable measurements in 72/100 patients (72%).

CONCLUSION

The AI solution used in this study for combined coronal and sagittal spinopelvic balance assessment provides results consistent with those of a senior musculoskeletal radiologist, and shows potential benefit for reducing workload in future routine implementation.

摘要

目的

本研究旨在评估一种人工智能(AI)解决方案,用于评估常规二维全脊柱正位片上的冠状位和矢状位脊柱骨盆对线。

材料与方法

本回顾性观察研究纳入了 2022 年 1 月至 7 月间在站立位接受常规二维全脊柱正位片检查的 100 例患者(35 名男性,65 名女性),中位年龄 14 岁(IQR:13,15.25;年龄范围:3-64 岁)。由一名初级放射科医师在无 AI 辅助的情况下回顾性测量 10 个最常用的脊柱骨盆冠状位和矢状位参数,然后由一名资深的肌肉骨骼放射科医师进行审核或调整,以得出最终的测量值。最终的测量值被用作评估每个参数的 AI 性能的基准。使用平均绝对误差(MAE)、组内相关系数(ICC)和选定的临床相关阈值的准确性来评估 AI 性能。读者对 AI 输出进行视觉分类,以评估在患者层面的可靠性。

结果

AI 解决方案在冠状位(ICC≥0.95;MAE≤2.9°或 1.97mm)和矢状位(ICC≥0.85;MAE≤4.4°或 2.7mm)脊柱骨盆评估中表现出极好的一致性,无偏倚,但在脊柱后凸方面除外(ICC=0.58;MAE=8.7°)。AI 区分低 Cobb 角、严重脊柱侧凸或前骨盆不对称的准确率分别为 91%(95%CI:85-96)、99%(95%CI:97-100)和 94%(95%CI:89-98)。总体而言,AI 在 72/100 例患者(72%)中提供了可靠的测量结果。

结论

本研究中使用的 AI 解决方案用于联合评估冠状位和矢状位脊柱骨盆平衡,其结果与资深肌肉骨骼放射科医师的结果一致,在未来常规应用中可能有助于减轻工作负荷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验