Suppr超能文献

同系建模的灰色地带:通过序列空间分析提高准确性。

Homology Modeling in the Twilight Zone: Improved Accuracy by Sequence Space Analysis.

机构信息

UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.

出版信息

Methods Mol Biol. 2023;2627:1-23. doi: 10.1007/978-1-0716-2974-1_1.

Abstract

The analysis of the relationship between sequence and structure similarities during the evolution of a protein family has revealed a limit of sequence divergence for which structural conservation can be confidently assumed and homology modeling is reliable. Below this limit, the twilight zone corresponds to sequence divergence for which homology modeling becomes increasingly difficult and requires specific methods. Either with conventional threading methods or with recent deep learning methods, such as AlphaFold, the challenge relies on the identification of a template that shares not only a common ancestor (homology) but also a conserved structure with the query. As both homology and structural conservation are transitive properties, mining of sequence databases followed by multidimensional scaling (MDS) of the query sequence space can reveal intermediary sequences to infer homology and structural conservation between the query and the template. Here, as a case study, we studied the plethodontid receptivity factor isoform 1 (PRF1) from Plethodon jordani, a member of a pheromone protein family present only in lungless salamanders and weakly related to cytokines of the IL6 family. A variety of conventional threading methods led to the cytokine CNTF as a template. Sequence mining, followed by phylogenetic and MDS analysis, provided missing links between PRF1 and CNTF and allowed reliable homology modeling. In addition, we compared automated models obtained from web servers to a customized model to show how modeling can be improved by expert information.

摘要

对蛋白家族进化过程中序列和结构相似性的分析揭示了一个序列分歧的限制,在此限制内,可以有把握地假设结构保守性并认为同源建模是可靠的。在这个限制以下,是黄昏区,对应于同源建模变得越来越困难并且需要特定方法的序列分歧。无论是使用传统的穿线方法还是最近的深度学习方法,如 AlphaFold,挑战都在于识别不仅共享共同祖先(同源性)而且与查询共享保守结构的模板。由于同源性和结构保守性都是传递性质,因此对序列数据库进行挖掘,然后对查询序列空间进行多维缩放(MDS),可以揭示中间序列,以推断查询和模板之间的同源性和结构保守性。在这里,作为一个案例研究,我们研究了 Plethodon jordani 的 Plethodontid 接受因子异构体 1(PRF1),这是一种仅存在于无肺蝾螈中的信息素蛋白家族的成员,与 IL6 家族的细胞因子关系较弱。各种常规穿线方法都导致细胞因子 CNTF 作为模板。序列挖掘,然后进行系统发育和 MDS 分析,提供了 PRF1 和 CNTF 之间缺失的联系,并允许进行可靠的同源建模。此外,我们比较了来自网络服务器的自动模型和定制模型,以展示如何通过专家信息来改进建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验