Department of Chemistry, Tsinghua University, Beijing, 100084, China.
School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia.
Angew Chem Int Ed Engl. 2023 May 22;62(22):e202217449. doi: 10.1002/anie.202217449. Epub 2023 Apr 19.
Nickel-based catalysts have been regarded as one of the most promising electrocatalysts for urea oxidation reaction (UOR), however, their activity is largely limited by the inevitable self-oxidation reaction of Ni species (NSOR) during the UOR. Here, we proposed an interface chemistry modulation strategy to trigger the occurrence of UOR before the NSOR via constructing a 2D/2D heterostructure that consists of ultrathin NiO anchored Ru-Co dual-atom support (Ru-Co DAS/NiO). Operando spectroscopic characterizations confirm this unique triggering mechanism on the surface of Ru-Co DAS/NiO. Consequently, the fabricated catalyst exhibits outstanding UOR activity with a low potential of 1.288 V at 10 mA cm and remarkable long-term durability for more than 330 h operation. DFT calculations and spectroscopic characterizations demonstrate that the favorable electronic structure induced by this unique heterointerface endows the catalyst energetically more favorable for the UOR than the NSOR.
镍基催化剂被认为是最有前途的尿素氧化反应 (UOR) 电催化剂之一,然而,其活性在很大程度上受到 UOR 过程中 Ni 物种不可避免的自氧化反应 (NSOR) 的限制。在这里,我们提出了一种界面化学调制策略,通过构建由超薄 NiO 锚定 Ru-Co 双原子载体 (Ru-Co DAS/NiO) 组成的 2D/2D 异质结构,在 NSOR 发生之前引发 UOR。原位光谱表征证实了 Ru-Co DAS/NiO 表面的这种独特触发机制。因此,所制备的催化剂表现出优异的 UOR 活性,在 10 mA cm 时的电位低至 1.288 V,并且在超过 330 h 的运行中具有出色的长期耐久性。DFT 计算和光谱表征表明,这种独特的异质界面诱导的有利电子结构使催化剂在能量上更有利于 UOR 而不是 NSOR。