Suppr超能文献

机器学习在震颤分析中的应用:批判与展望。

Machine Learning in Tremor Analysis: Critique and Directions.

机构信息

Department of Neurology, University Hospital Wuerzburg, Wuerzburg, Germany.

Department of Electronics and Instrumentation, Birla Institute of Technology and Science, Pilani, Hyderabad, India.

出版信息

Mov Disord. 2023 May;38(5):717-731. doi: 10.1002/mds.29376. Epub 2023 Mar 23.

Abstract

Tremor is the most frequent human movement disorder, and its diagnosis is based on clinical assessment. Yet finding the accurate clinical diagnosis is not always straightforward. Fine-tuning of clinical diagnostic criteria over the past few decades, as well as device-based qualitative analysis, has resulted in incremental improvements to diagnostic accuracy. Accelerometric assessments are commonplace, enabling clinicians to capture high-resolution oscillatory properties of tremor, which recently have been the focus of various machine-learning (ML) studies. In this context, the application of ML models to accelerometric recordings provides the potential for less-biased classification and quantification of tremor disorders. However, if implemented incorrectly, ML can result in spurious or nongeneralizable results and misguided conclusions. This work summarizes and highlights recent developments in ML tools for tremor research, with a focus on supervised ML. We aim to highlight the opportunities and limitations of such approaches and provide future directions while simultaneously guiding the reader through the process of applying ML to analyze tremor data. We identify the need for the movement disorder community to take a more proactive role in the application of these novel analytical technologies, which so far have been predominantly pursued by the engineering and data analysis field. Ultimately, big-data approaches offer the possibility to identify generalizable patterns but warrant meaningful translation into clinical practice. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

摘要

震颤是最常见的人类运动障碍,其诊断基于临床评估。然而,找到准确的临床诊断并不总是那么简单。过去几十年来,对临床诊断标准的不断细化,以及基于设备的定性分析,都使诊断准确性得到了逐步提高。加速计评估已经很常见,使临床医生能够捕捉到震颤的高分辨率振荡特性,这些特性最近一直是各种机器学习 (ML) 研究的焦点。在这种情况下,将 ML 模型应用于加速计记录为震颤障碍的分类和量化提供了减少偏差的潜力。然而,如果使用不当,ML 可能会导致虚假或不可推广的结果和误导性的结论。这项工作总结并强调了 ML 工具在震颤研究中的最新进展,重点是监督 ML。我们旨在强调此类方法的机遇和局限性,并提供未来的方向,同时指导读者应用 ML 分析震颤数据。我们发现运动障碍界需要在应用这些新的分析技术方面发挥更积极的作用,到目前为止,这些技术主要是由工程和数据分析领域追求的。最终,大数据方法有可能识别出可推广的模式,但需要有意义地转化为临床实践。© 2023 作者。运动障碍协会代表国际帕金森和运动障碍协会由 Wiley 期刊出版公司出版。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验