Suppr超能文献

基于脉冲偶联神经网络的光卷积神经网络图像分类

Image Classification Based on Light Convolutional Neural Network Using Pulse Couple Neural Network.

机构信息

Telecommunication-Automatic-Signal-Image-Research, Laboratory/Doctoral School in Science and Technology of Engineering and Innovation/University of Antananarivo, Antananarivo 101, Madagascar.

出版信息

Comput Intell Neurosci. 2023 Mar 14;2023:7371907. doi: 10.1155/2023/7371907. eCollection 2023.

Abstract

Recently, most image classification studies solicit the intervention of convolutional neural networks because these DL-based classification methods generally outperform other methodologies with higher accuracy. However, this type of deep learning networks require many parameters and have a complex structure with multiple convolutional and pooling layers depending on the objective. These layers compute a large volume of data and it may impact the processing time and the performance. Therefore, this paper proposes a new method of image classification based on the light convolutional neural network. It consists of replacing the feature extraction layers of standard convolutional neural network with a single pulse coupled neural network by introducing the notion of foveation. This module provides the feature map of input image and the data compression using Discrete Wavelet Transform which is an optional step depending on the information quantity of this signature. The fully connected neural network, which has six hidden layers, classifies the image. With this technique, the computation time is reduced, and the network architecture is identical and simple independent of the type of dataset. The number of parameter is less than that in current research. The proposed method was validated with different dataset such as Caltech-101, Caltech-256, CIFAR-10, CIFAR-100, and ImageNet, and the accuracy reaches 92%, 90%, 99%, 94%, and 91%, respectively, which are better than the previous related works.

摘要

最近,大多数图像分类研究都寻求卷积神经网络的干预,因为这些基于深度学习的分类方法通常比其他方法具有更高的准确性。然而,这种类型的深度学习网络需要许多参数,并且具有复杂的结构,具有多个卷积和池化层,具体取决于目标。这些层计算大量数据,这可能会影响处理时间和性能。因此,本文提出了一种新的基于轻卷积神经网络的图像分类方法。它通过引入注视的概念,用单个脉冲耦合神经网络代替标准卷积神经网络的特征提取层。该模块提供输入图像的特征图,并使用离散小波变换进行数据压缩,这是根据该签名的信息量可选的步骤。具有六个隐藏层的全连接神经网络对图像进行分类。通过这种技术,计算时间减少,并且网络架构与数据集的类型无关,是相同且简单的。参数数量少于当前研究中的数量。该方法已经在不同的数据集上进行了验证,例如 Caltech-101、Caltech-256、CIFAR-10、CIFAR-100 和 ImageNet,准确率分别达到 92%、90%、99%、94%和 91%,优于以前的相关工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2188/10030221/8adaea44eaf2/CIN2023-7371907.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验