Suppr超能文献

基于方案设计的深度学习在介入性临床试验中的风险预测:一项回顾性研究。

Deep learning-based risk prediction for interventional clinical trials based on protocol design: A retrospective study.

作者信息

Ferdowsi Sohrab, Knafou Julien, Borissov Nikolay, Vicente Alvarez David, Mishra Rahul, Amini Poorya, Teodoro Douglas

机构信息

Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.

Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland.

出版信息

Patterns (N Y). 2023 Feb 10;4(3):100689. doi: 10.1016/j.patter.2023.100689. eCollection 2023 Mar 10.

Abstract

Success rate of clinical trials (CTs) is low, with the protocol design itself being considered a major risk factor. We aimed to investigate the use of deep learning methods to predict the risk of CTs based on their protocols. Considering protocol changes and their final status, a retrospective risk assignment method was proposed to label CTs according to low, medium, and high risk levels. Then, transformer and graph neural networks were designed and combined in an ensemble model to learn to infer the ternary risk categories. The ensemble model achieved robust performance (area under the receiving operator characteristic curve [AUROC] of 0.8453 [95% confidence interval: 0.8409-0.8495]), similar to the individual architectures but significantly outperforming a baseline based on bag-of-words features (0.7548 [0.7493-0.7603] AUROC). We demonstrate the potential of deep learning in predicting the risk of CTs from their protocols, paving the way for customized risk mitigation strategies during protocol design.

摘要

临床试验(CTs)的成功率较低,其方案设计本身被认为是一个主要风险因素。我们旨在研究使用深度学习方法,根据临床试验方案预测其风险。考虑到方案的变化及其最终状态,我们提出了一种回顾性风险分配方法,根据低、中、高风险水平对临床试验进行分类。然后,设计了Transformer和图神经网络,并将其组合成一个集成模型,以学习推断三元风险类别。该集成模型表现出稳健的性能(受试者工作特征曲线下面积 [AUROC] 为0.8453 [95% 置信区间:0.8409 - 0.8495]),与单个架构相似,但显著优于基于词袋特征的基线模型(AUROC为0.7548 [0.7493 - 0.7603])。我们展示了深度学习在根据临床试验方案预测其风险方面的潜力,为在方案设计过程中制定定制化的风险缓解策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e164/10028430/cf9dee1cbf96/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验