Suppr超能文献

基于大语言模型的临床试验设计资格标准聚类分析。

Analysis of eligibility criteria clusters based on large language models for clinical trial design.

作者信息

Bornet Alban, Khlebnikov Philipp, Meer Florian, Haas Quentin, Yazdani Anthony, Zhang Boya, Amini Poorya, Teodoro Douglas

机构信息

Department of Radiology and Medical Informatics, University of Geneva, 1202 Geneva, Switzerland.

Risklick AG, 3013 Bern, Switzerland.

出版信息

J Am Med Inform Assoc. 2025 Mar 1;32(3):447-458. doi: 10.1093/jamia/ocae311.

Abstract

OBJECTIVES

Clinical trials (CTs) are essential for improving patient care by evaluating new treatments' safety and efficacy. A key component in CT protocols is the study population defined by the eligibility criteria. This study aims to evaluate the effectiveness of large language models (LLMs) in encoding eligibility criterion information to support CT-protocol design.

MATERIALS AND METHODS

We extracted eligibility criterion sections, phases, conditions, and interventions from CT protocols available in the ClinicalTrials.gov registry. Eligibility sections were split into individual rules using a criterion tokenizer and embedded using LLMs. The obtained representations were clustered. The quality and relevance of the clusters for protocol design was evaluated through 3 experiments: intrinsic alignment with protocol information and human expert cluster coherence assessment, extrinsic evaluation through CT-level classification tasks, and eligibility section generation.

RESULTS

Sentence embeddings fine-tuned using biomedical corpora produce clusters with the highest alignment to CT-level information. Human expert evaluation confirms that clusters are well structured and coherent. Despite the high information compression, clusters retain significant CT information, up to 97% of the classification performance obtained with raw embeddings. Finally, eligibility sections automatically generated using clusters achieve 95% of the ROUGE scores obtained with a generative LLM prompted with CT-protocol details, suggesting that clusters encapsulate information useful to CT-protocol design.

DISCUSSION

Clusters derived from sentence-level LLM embeddings effectively summarize complex eligibility criterion data while retaining relevant CT-protocol details. Clustering-based approaches provide a scalable enhancement in CT design that balances information compression with accuracy.

CONCLUSIONS

Clustering eligibility criteria using LLM embeddings provides a practical and efficient method to summarize critical protocol information. We provide an interactive visualization of the pipeline here.

摘要

目的

临床试验对于通过评估新治疗方法的安全性和有效性来改善患者护理至关重要。临床试验方案的一个关键组成部分是由纳入标准定义的研究人群。本研究旨在评估大语言模型(LLMs)在编码纳入标准信息以支持临床试验方案设计方面的有效性。

材料和方法

我们从ClinicalTrials.gov注册库中可用的临床试验方案中提取纳入标准部分、阶段、条件和干预措施。使用标准分词器将纳入标准部分拆分为单个规则,并使用大语言模型进行嵌入。对获得的表示进行聚类。通过3个实验评估聚类对于方案设计的质量和相关性:与方案信息的内在一致性以及人类专家聚类连贯性评估、通过临床试验级分类任务进行的外在评估以及纳入标准部分生成。

结果

使用生物医学语料库微调的句子嵌入产生与临床试验级信息一致性最高的聚类。人类专家评估证实聚类结构良好且连贯。尽管信息压缩程度高,但聚类保留了重要的临床试验信息,高达原始嵌入获得的分类性能的97%。最后,使用聚类自动生成的纳入标准部分达到了使用临床试验方案细节提示的生成式大语言模型获得的ROUGE分数的95%,这表明聚类封装了对临床试验方案设计有用的信息。

讨论

从句子级大语言模型嵌入中得出的聚类有效地总结了复杂的纳入标准数据,同时保留了相关的临床试验方案细节。基于聚类的方法在临床试验设计中提供了一种可扩展的增强,在信息压缩和准确性之间取得了平衡。

结论

使用大语言模型嵌入对纳入标准进行聚类提供了一种实用且高效的方法来总结关键的方案信息。我们在此提供了该流程的交互式可视化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ae/11833473/5ea8d0d879c5/ocae311f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验