Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Plant Commun. 2023 Sep 11;4(5):100594. doi: 10.1016/j.xplc.2023.100594. Epub 2023 Mar 23.
Crassulacean acid metabolism (CAM) has high water-use efficiency (WUE) and is widely recognized to have evolved from C photosynthesis. Different plant lineages have convergently evolved CAM, but the molecular mechanism that underlies C-to-CAM evolution remains to be clarified. Platycerium bifurcatum (elkhorn fern) provides an opportunity to study the molecular changes underlying the transition from C to CAM photosynthesis because both modes of photosynthesis occur in this species, with sporotrophophyll leaves (SLs) and cover leaves (CLs) performing C and weak CAM photosynthesis, respectively. Here, we report that the physiological and biochemical attributes of CAM in weak CAM-performing CLs differed from those in strong CAM species. We investigated the diel dynamics of the metabolome, proteome, and transcriptome in these dimorphic leaves within the same genetic background and under identical environmental conditions. We found that multi-omic diel dynamics in P. bifurcatum exhibit both tissue and diel effects. Our analysis revealed temporal rewiring of biochemistry relevant to the energy-producing pathway (TCA cycle), CAM pathway, and stomatal movement in CLs compared with SLs. We also confirmed that PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE (PPCK) exhibits convergence in gene expression among highly divergent CAM lineages. Gene regulatory network analysis identified candidate transcription factors regulating the CAM pathway and stomatal movement. Taken together, our results provide new insights into weak CAM photosynthesis and new avenues for CAM bioengineering.
景天酸代谢(CAM)具有较高的水分利用效率(WUE),并且被广泛认为是从 C 光合作用进化而来的。不同的植物谱系已经趋同进化出了 CAM,但支持 C 到 CAM 进化的分子机制仍有待阐明。鹿角蕨(elkhorn fern)为研究从 C 光合作用到 CAM 光合作用转变的分子变化提供了机会,因为在该物种中同时存在这两种光合作用模式,营养叶(SLs)和保护叶(CLs)分别进行 C 光合作用和弱 CAM 光合作用。在这里,我们报告了弱 CAM 执行的 CLs 中 CAM 的生理生化特性与强 CAM 物种不同。我们在同一遗传背景和相同环境条件下研究了这些二态叶中的代谢组、蛋白质组和转录组的昼夜动态变化。我们发现,在同一遗传背景和相同环境条件下,P. bifurcatum 的多组学昼夜动态变化在组织和昼夜两方面都表现出不同。我们的分析表明,与 SLs 相比,CLs 中与能量产生途径(三羧酸循环)、CAM 途径和气孔运动相关的生物化学物质存在时间上的重新布线。我们还证实,在高度分化的 CAM 谱系中,磷酸烯醇丙酮酸羧激酶(PPCK)的基因表达表现出趋同。基因调控网络分析确定了调节 CAM 途径和气孔运动的候选转录因子。总之,我们的结果为弱 CAM 光合作用提供了新的见解,并为 CAM 生物工程提供了新的途径。