Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; email:
Annu Rev Plant Biol. 2021 Jun 17;72:77-103. doi: 10.1146/annurev-arplant-071720-104814. Epub 2021 Apr 13.
Crassulacean acid metabolism (CAM) has evolved from a C ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C genes and their regulators to enable the trait. The circadian pattern of CO fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
景天酸代谢(CAM)从 C 初始状态进化而来,以提高光合作用的水分利用效率。在 CAM 进化过程中,选择压力改变了 C 基因及其调控因子的丰度和表达模式,从而使该性状得以实现。在 CAM 中观察到的 CO 固定的昼夜节律和气孔开放模式可以用已经存在于 C 植物中的调控结构来很好地解释。代谢 CAM 循环依赖于 C 植物中存在的酶和转运蛋白,需要严格的调控控制,以避免羧化和脱羧之间的无效循环。生态观察和建模指出,胞质导度是 CAM 进化过程中的一个主要因素。目前的知识状况可以为最小化 CAM 循环的基因提供建议,用于概念验证工程,假设淀粉合成和降解的改变调控不是 CAM 光合作用的关键因素,并且从液泡中充分输出苹果酸是可能的。