Suppr超能文献

基因复制编辑调控水稻气孔密度以维持光合作用和提高耐旱性。

Paralog editing tunes rice stomatal density to maintain photosynthesis and improve drought tolerance.

机构信息

Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA.

Innovative Genomics Institute, Berkeley, CA 94704, USA.

出版信息

Plant Physiol. 2023 May 31;192(2):1168-1182. doi: 10.1093/plphys/kiad183.

Abstract

Rice (Oryza sativa) is of paramount importance for global nutrition, supplying at least 20% of global calories. However, water scarcity and increased drought severity are anticipated to reduce rice yields globally. We explored stomatal developmental genetics as a mechanism for improving drought resilience in rice while maintaining yield under climate stress. CRISPR/Cas9-mediated knockouts of the positive regulator of stomatal development STOMAGEN and its paralog EPIDERMAL PATTERNING FACTOR-LIKE10 (EPFL10) yielded lines with ∼25% and 80% of wild-type stomatal density, respectively. epfl10 lines with moderate reductions in stomatal density were able to conserve water to similar extents as stomagen lines but did not suffer from the concomitant reductions in stomatal conductance, carbon assimilation, or thermoregulation observed in stomagen knockouts. Moderate reductions in stomatal density achieved by editing EPFL10 present a climate-adaptive approach for safeguarding yield in rice. Editing the paralog of STOMAGEN in other species may provide a means for tuning stomatal density in agriculturally important crops beyond rice.

摘要

水稻(Oryza sativa)对全球营养至关重要,提供至少全球 20%的热量。然而,预计水资源短缺和干旱加剧将减少全球水稻产量。我们探讨了气孔发育遗传学作为一种在保持气候胁迫下产量的同时提高水稻耐旱性的机制。CRISPR/Cas9 介导的气孔发育正调节剂 STOMAGEN 和其同源物 EPIDERMAL PATTERNING FACTOR-LIKE10(EPFL10)的敲除产生了气孔密度分别约为野生型的 25%和 80%的品系。气孔密度适度降低的 epfl10 品系能够以类似于 stomagen 品系的程度节约用水,但不会遭受 stomagen 敲除中观察到的气孔导度、碳同化或热调节的相应降低。通过编辑 EPFL10 适度降低气孔密度为水稻提供了一种适应气候的方法来保障产量。编辑 STOMAGEN 同源物在除水稻以外的农业重要作物中可能提供一种调节气孔密度的方法。

相似文献

1
Paralog editing tunes rice stomatal density to maintain photosynthesis and improve drought tolerance.
Plant Physiol. 2023 May 31;192(2):1168-1182. doi: 10.1093/plphys/kiad183.
2
5
Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering.
PLoS One. 2014 Oct 2;9(9):e109054. doi: 10.1371/journal.pone.0109054. eCollection 2014.
6
The influences of stomatal size and density on rice abiotic stress resilience.
New Phytol. 2023 Mar;237(6):2180-2195. doi: 10.1111/nph.18704. Epub 2023 Jan 11.
7
Mutation of a RING E3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density.
Physiol Plant. 2024 Sep-Oct;176(5):e14565. doi: 10.1111/ppl.14565.
9
Enhances Drought Tolerance by Regulating Stomatal Development and Stomatal Size in .
Int J Mol Sci. 2023 Apr 28;24(9):8007. doi: 10.3390/ijms24098007.
10
Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions.
Plant J. 2020 Dec;104(5):1334-1347. doi: 10.1111/tpj.15004. Epub 2020 Nov 4.

引用本文的文献

3
The regulatory role of ZmSTOMAGEN1/2 in maize stomatal development is elucidated via gene editing and metabolic profiling.
PLoS One. 2025 Jul 14;20(7):e0328433. doi: 10.1371/journal.pone.0328433. eCollection 2025.
4
Advancements in Water-Saving Strategies and Crop Adaptation to Drought: A Comprehensive Review.
Physiol Plant. 2025 Jul-Aug;177(4):e70332. doi: 10.1111/ppl.70332.
5
Translational insights into abiotic interactions: From Arabidopsis to crop plants.
Plant Cell. 2025 Jul 1;37(7). doi: 10.1093/plcell/koaf140.
6
Transcriptional gene network involved in drought stress response: application for crop breeding in the context of climate change.
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240236. doi: 10.1098/rstb.2024.0236.
7
Needs and opportunities to future-proof crops and the use of crop systems to mitigate atmospheric change.
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240229. doi: 10.1098/rstb.2024.0229.
9
DSD1/ZmICEb regulates stomatal development and drought tolerance in maize.
J Integr Plant Biol. 2025 Jun;67(6):1487-1500. doi: 10.1111/jipb.13890. Epub 2025 Mar 19.
10
How Rice Responds to Temperature Changes and Defeats Heat Stress.
Rice (N Y). 2024 Nov 29;17(1):73. doi: 10.1186/s12284-024-00748-2.

本文引用的文献

1
Climate impacts on global agriculture emerge earlier in new generation of climate and crop models.
Nat Food. 2021 Nov;2(11):873-885. doi: 10.1038/s43016-021-00400-y. Epub 2021 Nov 1.
2
Knock-Out via CRISPR/Cas9 Reduces Stomatal Density in Grapevine.
Front Plant Sci. 2022 May 17;13:878001. doi: 10.3389/fpls.2022.878001. eCollection 2022.
3
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
4
Duplicated antagonistic EPF peptides optimize grass stomatal initiation.
Development. 2021 Aug 15;148(16). doi: 10.1242/dev.199780. Epub 2021 Aug 26.
5
Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance.
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2026152118.
7
The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light.
Plant Physiol. 2021 Jun 11;186(2):998-1012. doi: 10.1093/plphys/kiab114.
8
Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes.
Nat Plants. 2021 Mar;7(3):287-294. doi: 10.1038/s41477-021-00858-5. Epub 2021 Feb 22.
10
Pfam: The protein families database in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419. doi: 10.1093/nar/gkaa913.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验