Suppr超能文献

相似文献

2
Distinct contribution of two cyclic electron transport pathways to P700 oxidation.
Plant Physiol. 2023 May 2;192(1):326-341. doi: 10.1093/plphys/kiac557.
5
Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS.
Front Plant Sci. 2015 Jul 8;6:521. doi: 10.3389/fpls.2015.00521. eCollection 2015.
6
Cyclic Electron Transport around PSI Contributes to Photosynthetic Induction with Thioredoxin .
Plant Physiol. 2020 Nov;184(3):1291-1302. doi: 10.1104/pp.20.00741. Epub 2020 Sep 11.
7
PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.
Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.
9
PGR5 and NDH-1 systems do not function as protective electron acceptors but mitigate the consequences of PSI inhibition.
Biochim Biophys Acta Bioenerg. 2020 Mar 1;1861(3):148154. doi: 10.1016/j.bbabio.2020.148154. Epub 2020 Jan 11.

引用本文的文献

1
Differential FeS cluster photodamage plays a critical role in regulating excess electron flow through photosystem I.
Nat Plants. 2024 Oct;10(10):1592-1603. doi: 10.1038/s41477-024-01780-2. Epub 2024 Sep 13.
2
Regulation of Microalgal Photosynthetic Electron Transfer.
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
4
Photosynthetic control at the cytochrome b6f complex.
Plant Cell. 2024 Oct 3;36(10):4065-4079. doi: 10.1093/plcell/koae133.
5
NaCl Pretreatment Enhances the Low Temperature Tolerance of Tomato Through Photosynthetic Acclimation.
Front Plant Sci. 2022 Jun 13;13:891697. doi: 10.3389/fpls.2022.891697. eCollection 2022.
6
Restricting electron flow at cytochrome b6f when downstream electron acceptors are severely limited.
Plant Physiol. 2023 May 31;192(2):789-804. doi: 10.1093/plphys/kiad185.
7
A tale of two CETs: Untangling cyclic electron transfer.
Plant Physiol. 2023 May 2;192(1):7-9. doi: 10.1093/plphys/kiad088.
8
High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.
Plant Physiol. 2023 May 2;192(1):370-386. doi: 10.1093/plphys/kiad084.
9
Distinct contribution of two cyclic electron transport pathways to P700 oxidation.
Plant Physiol. 2023 May 2;192(1):326-341. doi: 10.1093/plphys/kiac557.

本文引用的文献

3
Cytochrome bf - Orchestrator of photosynthetic electron transfer.
Biochim Biophys Acta Bioenerg. 2021 May 1;1862(5):148380. doi: 10.1016/j.bbabio.2021.148380. Epub 2021 Jan 16.
4
Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I.
Nat Plants. 2021 Jan;7(1):87-98. doi: 10.1038/s41477-020-00828-3. Epub 2021 Jan 11.
5
In-vivo quantification of electron flow through photosystem I - Cyclic electron transport makes up about 35% in a cyanobacterium.
Biochim Biophys Acta Bioenerg. 2021 Mar 1;1862(3):148353. doi: 10.1016/j.bbabio.2020.148353. Epub 2020 Dec 18.
6
Collaboration between NDH and KEA3 Allows Maximally Efficient Photosynthesis after a Long Dark Adaptation.
Plant Physiol. 2020 Dec;184(4):2078-2090. doi: 10.1104/pp.20.01069. Epub 2020 Sep 25.
7
Does the Arabidopsis Mutant Leak Protons from the Thylakoid Membrane?
Plant Physiol. 2020 Sep;184(1):421-427. doi: 10.1104/pp.20.00850. Epub 2020 Jul 7.
8
Contrasting Responses to Stress Displayed by Tobacco Overexpressing an Algal Plastid Terminal Oxidase in the Chloroplast.
Front Plant Sci. 2020 Apr 28;11:501. doi: 10.3389/fpls.2020.00501. eCollection 2020.
9
PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow.
Biochem J. 2020 May 15;477(9):1631-1650. doi: 10.1042/BCJ20190914.
10
Dynamics of the localization of the plastid terminal oxidase inside the chloroplast.
J Exp Bot. 2020 May 9;71(9):2661-2669. doi: 10.1093/jxb/eraa074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验