Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.
Biotechnol Genet Eng Rev. 2024 Oct;40(2):1136-1154. doi: 10.1080/02648725.2023.2193036. Epub 2023 Mar 26.
Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set ( = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835-0.874), 0.838 (95% CI, 0.823-0.852) and 0.799 (95% CI, 0.785-0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859-0.897), 0.866 (95% CI, 0.852-0.879) and 0.854 (95% CI, 0.841-0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.
双侧原发性乳腺癌(BPBC)患者的预后更差。在临床实践中,缺乏准确预测 BPBC 患者死亡风险的工具。我们旨在开发一种用于预测 BPBC 患者死亡的临床有用的预测模型。从 2004 年至 2015 年,SEER 数据库中共有 19245 例 BPBC 患者被随机分为训练集(n=13471)和测试集(n=5774)。建立了预测 BPBC 患者 1 年、3 年和 5 年死亡风险的模型。使用多变量 Cox 回归分析建立全因死亡预测模型,使用竞争风险分析建立癌症特异性死亡预测模型。使用 95%置信区间(CI)计算接收者操作特征曲线(AUC)下面积、敏感性、特异性和准确性来评估模型的性能。年龄、婚姻状况、间隔时间以及第一和第二肿瘤状态均与全因死亡和癌症特异性死亡相关(均<0.05)。Cox 回归模型预测 1 年、3 年和 5 年全因死亡的 AUC 分别为 0.854(95%CI,0.835-0.874)、0.838(95%CI,0.823-0.852)和 0.799(95%CI,0.785-0.812)。竞争风险模型预测 1 年、3 年和 5 年癌症特异性死亡的 AUC 分别为 0.878(95%CI,0.859-0.897)、0.866(95%CI,0.852-0.879)和 0.854(95%CI,0.841-0.867)。开发了预测 BPBC 患者全因死亡和癌症特异性死亡的列线图,这可能为临床医生提供预测 BPBC 患者死亡风险的工具。