Suppr超能文献

基于外泌体游离 DNA 的表观基因组血液学早期检测胰腺癌

Epigenomic Blood-Based Early Detection of Pancreatic Cancer Employing Cell-Free DNA.

机构信息

ClearNote Health, San Diego, California.

ClearNote Health, San Mateo, California.

出版信息

Clin Gastroenterol Hepatol. 2023 Jul;21(7):1802-1809.e6. doi: 10.1016/j.cgh.2023.03.016. Epub 2023 Mar 24.

Abstract

BACKGROUND & AIMS: Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma.

METHODS

Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs.

RESULTS

5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%).

CONCLUSIONS

The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.

摘要

背景与目的

早期发现胰腺癌(PaC)可以显著提高生存率。大约 25%的 PaC 患者在 PaC 诊断前 3 年内被诊断患有 2 型糖尿病,这表明 2 型糖尿病患者存在隐匿性 PaC 的高风险。我们已经开发了一种基于血浆中游离 DNA 中 5-羟甲基胞嘧啶(5hmC)信号变化的早期检测 PaC 测试。

方法

从 132 名 PaC 患者和 528 名非癌症患者采集血液,生成表观基因组和基因组特征集,得出预测 PaC 信号算法。该算法在一个由 102 名 PaC 患者、2048 名非癌症患者和 1524 名非 PaC 患者组成的盲法队列中进行了验证。

结果

5hmC 差异分析和其他基因组特征使能够开发出一种机器学习算法,能够以高特异性和敏感性区分 PaC 患者和非癌症患者。该算法在早期(I/II 期)PaC 的敏感性为 68.3%(95%置信区间[CI],51.9%-81.9%),总体特异性为 96.9%(95%CI,96.1%-97.7%)。

结论

在研究的具有不同 2 型糖尿病状态的队列中,PaC 检测测试显示出对 PaC 信号的稳健早期检测。该检测方法值得进一步进行临床验证,以用于高危人群的 PaC 早期检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验