Suppr超能文献

Wnt信号通路和平面细胞极性在左右不对称中的作用。

Role of Wnt signaling and planar cell polarity in left-right asymmetry.

作者信息

Minegishi Katsura, Sai Xiaorei, Hamada Hiroshi

机构信息

RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.

RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.

出版信息

Curr Top Dev Biol. 2023;153:181-193. doi: 10.1016/bs.ctdb.2023.01.008. Epub 2023 Feb 20.

Abstract

Wnt signaling plays essential roles in multiple steps of left-right (L-R) determination in development. First, canonical Wnt signaling is required to form the node, where L-R symmetry breaking takes place. Secondly, planar cell polarity (PCP) driven by non-canonical Wnt signaling polarizes node cells along the anterio-posterior (A-P) axis and provides the tilt of rotating cilia at the node, which generate the leftward fluid flow. Thus, reciprocal expression of Wnt5a/5b and their inhibitors Sfrp1, 2, 5 generates a gradient of Wnt5 activity along the embryo's anterior-posterior (A-P) axis. This polarizes cells at the node, by placing PCP core proteins on the anterior or posterior side of each node cell. Polarized PCP proteins subsequently induce asymmetric organization of microtubules along the A-P axis, which is thought to push the centrally localized basal body toward the posterior side of a node cell. Motile cilia that extend from the posteriorly-shifted basal body is tilted toward the posterior side of the embryo. Thirdly, canonical-Wnt signaling regulates the level and expansion of Nodal activity and establishes L-R asymmetric Nodal activity at the node, the first molecular asymmetry in the mouse embryo. Overall, both canonical and non-canonical Wnt signalings are essential for L-R symmetry breaking.

摘要

Wnt信号通路在发育过程中左右(L-R)决定的多个步骤中发挥着至关重要的作用。首先,经典Wnt信号通路是形成节点所必需的,左右对称的打破就发生在这个节点。其次,由非经典Wnt信号通路驱动的平面细胞极性(PCP)使节点细胞沿前后(A-P)轴极化,并使节点处旋转的纤毛产生倾斜,从而产生向左的液流。因此,Wnt5a/5b及其抑制剂Sfrp1、2、5的相互表达沿胚胎的前后(A-P)轴产生Wnt5活性梯度。这通过将PCP核心蛋白置于每个节点细胞的前侧或后侧,使节点处的细胞极化。极化的PCP蛋白随后诱导微管沿A-P轴的不对称组织,这被认为会将位于中心的基体推向节点细胞的后侧。从向后移位的基体延伸出的运动纤毛向胚胎的后侧倾斜。第三,经典Wnt信号通路调节Nodal活性的水平和扩展,并在节点处建立左右不对称的Nodal活性,这是小鼠胚胎中的第一个分子不对称现象。总体而言,经典和非经典Wnt信号通路对于左右对称的打破都是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验