Suppr超能文献

基于 XG Boost 机器学习算法的妊娠期糖尿病预测模型。

Prediction model for gestational diabetes mellitus using the XG Boost machine learning algorithm.

机构信息

Department of Nursing, Yantian District People's Hospital, Shenzhen, Guangdong, China.

School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.

出版信息

Front Endocrinol (Lausanne). 2023 Mar 9;14:1105062. doi: 10.3389/fendo.2023.1105062. eCollection 2023.

Abstract

OBJECTIVE

To develop the extreme gradient boosting (XG Boost) machine learning (ML) model for predicting gestational diabetes mellitus (GDM) compared with a model using the traditional logistic regression (LR) method.

METHODS

A case-control study was carried out among pregnant women, who were assigned to either the training set (these women were recruited from August 2019 to November 2019) or the testing set (these women were recruited in August 2020). We applied the XG Boost ML model approach to identify the best set of predictors out of a set of 33 variables. The performance of the prediction model was determined by using the area under the receiver operating characteristic (ROC) curve (AUC) to assess discrimination, and the Hosmer-Lemeshow (HL) test and calibration plots to assess calibration. Decision curve analysis (DCA) was introduced to evaluate the clinical use of each of the models.

RESULTS

A total of 735 and 190 pregnant women were included in the training and testing sets, respectively. The XG Boost ML model, which included 20 predictors, resulted in an AUC of 0.946 and yielded a predictive accuracy of 0.875, whereas the model using a traditional LR included four predictors and presented an AUC of 0.752 and yielded a predictive accuracy of 0.786. The HL test and calibration plots show that the two models have good calibration. DCA indicated that treating only those women whom the XG Boost ML model predicts are at risk of GDM confers a net benefit compared with treating all women or treating none.

CONCLUSIONS

The established model using XG Boost ML showed better predictive ability than the traditional LR model in terms of discrimination. The calibration performance of both models was good.

摘要

目的

与传统逻辑回归(LR)模型相比,开发用于预测妊娠糖尿病(GDM)的极端梯度增强(XG Boost)机器学习(ML)模型。

方法

对孕妇进行病例对照研究,将其分为训练集(这些孕妇于 2019 年 8 月至 11 月招募)或测试集(这些孕妇于 2020 年 8 月招募)。我们应用 XG Boost ML 模型方法从 33 个变量中确定最佳预测变量集。通过使用接收者操作特征(ROC)曲线下面积(AUC)评估判别能力、Hosmer-Lemeshow(HL)检验和校准图评估校准能力来确定预测模型的性能。引入决策曲线分析(DCA)来评估每个模型的临床应用。

结果

共纳入 735 名和 190 名孕妇分别进入训练集和测试集。XG Boost ML 模型包含 20 个预测因子,AUC 为 0.946,预测准确率为 0.875,而使用传统 LR 的模型包含 4 个预测因子,AUC 为 0.752,预测准确率为 0.786。HL 检验和校准图显示,两个模型都具有良好的校准性能。DCA 表明,与治疗所有女性或不治疗任何女性相比,仅对 XG Boost ML 模型预测有 GDM 风险的女性进行治疗可带来净收益。

结论

在判别能力方面,使用 XG Boost ML 建立的模型优于传统 LR 模型。两种模型的校准性能都很好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fd5/10034315/7f3f49452a11/fendo-14-1105062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验