Suppr超能文献

利用人工智能模型预测复发性妊娠期糖尿病:一项回顾性队列研究。

Predicting recurrent gestational diabetes mellitus using artificial intelligence models: a retrospective cohort study.

机构信息

Department of Obstetrics and Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, Fuzhou, China.

Zhangzhou Health Vocational College, Zhangzhou, China.

出版信息

Arch Gynecol Obstet. 2024 Sep;310(3):1621-1630. doi: 10.1007/s00404-024-07551-w. Epub 2024 Jul 30.

Abstract

BACKGROUND

We aimed to develop novel artificial intelligence (AI) models based on early pregnancy features to forecast the likelihood of recurrent gestational diabetes mellitus (GDM) before 14 weeks of gestation in subsequent pregnancies.

METHODS

This study involved a cohort of 588 women who had two consecutive singleton deliveries and were diagnosed with GDM during the index pregnancy. The least absolute shrinkage and selection operator (LASSO) regression analysis were used for feature selection. 5 AI algorithms, namely support vector machine (SVM), extreme gradient boosting (XGB), light gradient boosting (LGB), decision tree classifier (DTC), and random forest (RF) classifier, and traditional multivariate logistic regression (LR) model, were employed to construct predictive models for recurrent GDM.

RESULTS

326 (55.4%) experienced GDM recurrence in subsequent pregnancy. In the training set (67% of the study sample), 13 features were selected for AI models construction. In the testing set (33% of the study sample), the AI models (LGB, RF, and XGB) exhibited outstanding discrimination, with AUROC values of 0.942, 0.936, and 0.924, respectively. The traditional LR model showed moderate discrimination (AUROC = 0.696). LGB, RF, and XGB models also demonstrated excellent calibration, while other models indicated a lack of fit. All AI models showed superior overall net benefits, with LGB, RF, and XGB outperforming the others.

CONCLUSIONS

The proposed LGB model demonstrated exceptional accuracy, excellent calibration, and superior overall net benefits. These advancements have the potential to assist healthcare professionals in advising women with a history of GDM and in developing preventive strategies to mitigate the adverse effects on maternal and fetal well-being.

摘要

背景

我们旨在开发基于早期妊娠特征的新型人工智能(AI)模型,以便在后续妊娠中预测 14 周前复发性妊娠期糖尿病(GDM)的可能性。

方法

这项研究涉及了一个由 588 名女性组成的队列,她们连续两次分娩了单胎,且在指数妊娠期间被诊断为 GDM。使用最小绝对收缩和选择算子(LASSO)回归分析进行特征选择。使用 5 种 AI 算法,即支持向量机(SVM)、极端梯度提升(XGB)、轻梯度提升(LGB)、决策树分类器(DTC)和随机森林(RF)分类器,以及传统的多元逻辑回归(LR)模型,构建用于复发性 GDM 的预测模型。

结果

在后续妊娠中,有 326 名(55.4%)经历了 GDM 复发。在训练集(研究样本的 67%)中,为 AI 模型构建选择了 13 个特征。在测试集(研究样本的 33%)中,AI 模型(LGB、RF 和 XGB)表现出出色的区分能力,AUROC 值分别为 0.942、0.936 和 0.924。传统的 LR 模型显示出中等的区分能力(AUROC=0.696)。LGB、RF 和 XGB 模型也表现出出色的校准能力,而其他模型则显示出拟合不足。所有 AI 模型均表现出优越的总体净收益,其中 LGB、RF 和 XGB 表现优于其他模型。

结论

所提出的 LGB 模型表现出出色的准确性、优异的校准能力和优越的总体净收益。这些进展有可能帮助有 GDM 病史的女性的医护人员提供建议,并制定预防策略,以减轻对母婴健康的不利影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验