Suppr超能文献

下一代分子诊断技术:利用数字技术增强实时PCR中的多重检测。

Next-generation molecular diagnostics: Leveraging digital technologies to enhance multiplexing in real-time PCR.

作者信息

Kreitmann Louis, Miglietta Luca, Xu Ke, Malpartida-Cardenas Kenny, D'Souza Giselle, Kaforou Myrsini, Brengel-Pesce Karen, Drazek Laurent, Holmes Alison, Rodriguez-Manzano Jesus

机构信息

Department of Infectious Disease, Faculty of Medicine, Imperial College London, UK.

Research & Development, BioMérieux S.A, Marcy-l'Etoile, France.

出版信息

Trends Analyt Chem. 2023 Mar;160:116963. doi: 10.1016/j.trac.2023.116963. Epub 2023 Feb 9.

Abstract

Real-time polymerase chain reaction (qPCR) enables accurate detection and quantification of nucleic acids and has become a fundamental tool in biological sciences, bioengineering and medicine. By combining multiple primer sets in one reaction, it is possible to detect several DNA or RNA targets simultaneously, a process called multiplex PCR (mPCR) which is key to attaining optimal throughput, cost-effectiveness and efficiency in molecular diagnostics, particularly in infectious diseases. Multiple solutions have been devised to increase multiplexing in qPCR, including techniques, using target-specific fluorescent oligonucleotide probes, and where segregation of the sample enables parallel amplification of multiple targets. However, these solutions are mostly limited to three or four targets, or highly sophisticated and expensive instrumentation. There is a need for innovations that will push forward the multiplexing field in qPCR, enabling for a next generation of diagnostic tools which could accommodate high throughput in an affordable manner. To this end, the use of machine learning (ML) algorithms (data-driven solutions) has recently emerged to leverage information contained in amplification and melting curves (AC and MC, respectively) - two of the most standard bio-signals emitted during qPCR - for accurate classification of multiple nucleic acid targets in a single reaction. Therefore, this review aims to demonstrate and illustrate that data-driven solutions can be successfully coupled with state-of-the-art and common qPCR platforms using a variety of amplification chemistries to enhance multiplexing in qPCR. Further, because both ACs and MCs can be predicted from sequence data using thermodynamic databases, it has also become possible to use computer simulation to rationalize and optimize the design of mPCR assays where target detection is supported by data-driven technologies. Thus, this review also discusses recent work converging towards the development of an end-to-end framework where knowledge-based and data-driven software solutions are integrated to streamline assay design, and increase the accuracy of target detection and quantification in the multiplex setting. We envision that concerted efforts by academic and industry scientists will help advance these technologies, to a point where they become mature and robust enough to bring about major improvements in the detection of nucleic acids across many fields.

摘要

实时聚合酶链反应(qPCR)能够准确检测和定量核酸,已成为生物科学、生物工程和医学中的一项基本工具。通过在一个反应中组合多个引物组,可以同时检测多个DNA或RNA靶标,这一过程称为多重PCR(mPCR),它是在分子诊断中实现最佳通量、成本效益和效率的关键,尤其是在传染病诊断中。已经设计了多种解决方案来增加qPCR中的多重检测,包括使用靶标特异性荧光寡核苷酸探针的技术,以及通过样品分离实现多个靶标平行扩增的技术。然而,这些解决方案大多限于三或四个靶标,或者需要高度复杂且昂贵的仪器。需要进行创新,以推动qPCR中的多重检测领域发展,从而实现新一代诊断工具,能够以可承受的方式实现高通量。为此,最近出现了使用机器学习(ML)算法(数据驱动的解决方案)来利用扩增曲线和熔解曲线(分别为AC和MC)中包含的信息——这是qPCR过程中发出的两个最标准的生物信号——在单个反应中对多个核酸靶标进行准确分类。因此,本综述旨在证明和说明数据驱动的解决方案可以成功地与使用各种扩增化学方法的先进且常见的qPCR平台相结合,以增强qPCR中的多重检测。此外,由于可以使用热力学数据库从序列数据预测AC和MC,因此也可以使用计算机模拟来合理化和优化mPCR检测的设计,其中数据驱动技术支持靶标检测。因此,本综述还讨论了最近朝着开发端到端框架的工作,其中基于知识和数据驱动的软件解决方案被集成,以简化检测设计,并提高多重设置中靶标检测和定量的准确性。我们设想,学术界和行业科学家的共同努力将有助于推动这些技术的发展,使其成熟到足以在许多领域的核酸检测中带来重大改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6617/7614363/ec63f0acf026/EMS172246-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验