Suppr超能文献

一种用于对神经系统最优控制进行建模的框架。

An framework for modeling optimal control of neural systems.

作者信息

Rueckauer Bodo, van Gerven Marcel

机构信息

Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands.

出版信息

Front Neurosci. 2023 Mar 8;17:1141884. doi: 10.3389/fnins.2023.1141884. eCollection 2023.

Abstract

INTRODUCTION

Brain-machine interfaces have reached an unprecedented capacity to measure and drive activity in the brain, allowing restoration of impaired sensory, cognitive or motor function. Classical control theory is pushed to its limit when aiming to design control laws that are suitable for large-scale, complex neural systems. This work proposes a scalable, data-driven, unified approach to study brain-machine-environment interaction using established tools from dynamical systems, optimal control theory, and deep learning.

METHODS

To unify the methodology, we define the environment, neural system, and prosthesis in terms of differential equations with learnable parameters, which effectively reduce to recurrent neural networks in the discrete-time case. Drawing on tools from optimal control, we describe three ways to train the system: Direct optimization of an objective function, oracle-based learning, and reinforcement learning. These approaches are adapted to different assumptions about knowledge of system equations, linearity, differentiability, and observability.

RESULTS

We apply the proposed framework to train an neural system to perform tasks in a linear and a nonlinear environment, namely particle stabilization and pole balancing. After training, this model is perturbed to simulate impairment of sensor and motor function. We show how a prosthetic controller can be trained to restore the behavior of the neural system under increasing levels of perturbation.

DISCUSSION

We expect that the proposed framework will enable rapid and flexible synthesis of control algorithms for neural prostheses that reduce the need for testing. We further highlight implications for sparse placement of prosthetic sensor and actuator components.

摘要

引言

脑机接口在测量和驱动大脑活动方面已达到前所未有的能力,能够恢复受损的感觉、认知或运动功能。在旨在设计适用于大规模复杂神经系统的控制律时,经典控制理论已被推至极限。这项工作提出了一种可扩展的、数据驱动的统一方法,利用动力系统、最优控制理论和深度学习中的既定工具来研究脑机与环境的相互作用。

方法

为了统一方法,我们根据具有可学习参数的微分方程来定义环境、神经系统和假肢,在离散时间情况下,这些方程可有效简化为递归神经网络。借鉴最优控制的工具,我们描述了三种训练系统的方法:目标函数的直接优化、基于预言机的学习和强化学习。这些方法适用于关于系统方程的知识、线性、可微性和可观测性的不同假设。

结果

我们应用所提出的框架来训练一个神经系统,使其在线性和非线性环境中执行任务,即粒子稳定和摆杆平衡。训练后,对该模型进行扰动以模拟传感器和运动功能的损伤。我们展示了如何训练一个假肢控制器,以在不断增加的扰动水平下恢复神经系统的行为。

讨论

我们期望所提出的框架将能够快速灵活地合成神经假肢的控制算法,从而减少测试的需求。我们进一步强调了对假肢传感器和致动器组件稀疏放置的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc98/10030734/82f120673730/fnins-17-1141884-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验