School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.
Chaos. 2019 Nov;29(11):113126. doi: 10.1063/1.5120538.
Driver fatigue is an important cause of traffic accidents, which has triggered great concern for detecting drivers' fatigue. Numerous methods have been proposed to fulfill this challenging task, including feature methods and machine learning methods. Recently, with the development of deep learning techniques, many studies achieved better results than traditional feature methods, and the combination of traditional methods and deep learning techniques gradually received attention. In this paper, we propose a recurrence network-based convolutional neural network (RN-CNN) method to detect fatigue driving. To be specific, we first conduct a simulated driving experiment to collect electroencephalogram (EEG) signals of subjects under alert state and fatigue state. Then, we construct the multiplex recurrence network (RN) from EEG signals to fuse information from the original time series. Finally, CNN is employed to extract and learn the features of a multiplex RN for realizing a classification task. The results indicate that the proposed RN-CNN method can achieve an average accuracy of 92.95%. To verify the effectiveness of our method, some existing competitive methods are compared with ours. The results show that our method outperforms the existing methods, which demonstrate the effect of the RN-CNN method.
驾驶员疲劳是交通事故的一个重要原因,这引发了人们对检测驾驶员疲劳的极大关注。已经提出了许多方法来完成这项具有挑战性的任务,包括特征方法和机器学习方法。最近,随着深度学习技术的发展,许多研究取得了比传统特征方法更好的结果,传统方法和深度学习技术的结合逐渐受到关注。在本文中,我们提出了一种基于递归网络的卷积神经网络(RN-CNN)方法来检测疲劳驾驶。具体来说,我们首先进行模拟驾驶实验,以收集处于警觉状态和疲劳状态下的受试者的脑电图(EEG)信号。然后,我们从 EEG 信号构建多路递归网络(RN),以融合原始时间序列中的信息。最后,我们使用 CNN 提取和学习多路 RN 的特征,以实现分类任务。结果表明,所提出的 RN-CNN 方法可以达到 92.95%的平均准确率。为了验证我们方法的有效性,将一些现有的竞争方法与我们的方法进行了比较。结果表明,我们的方法优于现有的方法,这证明了 RN-CNN 方法的有效性。