Suppr超能文献

从自由生活数据中检测饮食和身体活动,以发现糖尿病患者血糖水平的干扰模式。

Meal and Physical Activity Detection from Free-living Data for Discovering Disturbance Patterns to Glucose Levels in People with Diabetes.

作者信息

Askari Mohammad Reza, Rashid Mudassir, Sun Xiaoyu, Sevil Mert, Shahidehpour Andrew, Kawaji Keigo, Cinar Ali

机构信息

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States.

Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States.

出版信息

BioMedInformatics. 2022 Jun;2(2):297-317. doi: 10.3390/biomedinformatics2020019. Epub 2022 Jun 1.

Abstract

OBJECTIVE

Interpretation of time series data collected in free-living has gained importance in chronic disease management. Some data are collected objectively from sensors and some are estimated and entered by the individual. In type 1 diabetes (T1D), blood glucose concentration (BGC) data measured by continuous glucose monitoring (CGM) systems and insulin doses administered can be used to detect the occurrences of meals and physical activities and generate the personal daily living patterns for use in automated insulin delivery (AID).

METHODS

Two challenges in time-series data collected in daily living are addressed: data quality improvement and detection of unannounced disturbances to BGC. CGM data have missing values for varying periods of time and outliers. People may neglect reporting their meal and physical activity information. In this work, novel methods for preprocessing real-world data collected from people with T1D and detection of meal and exercise events are presented. Four recurrent neural network (RNN) models are investigated to detect the occurrences of meals and physical activities disjointly or concurrently.

RESULTS

RNNs with long short-term memory (LSTM) with 1D convolution layers and bidirectional LSTM with 1D convolution layers have average accuracy scores of 92.32% and 92.29%, and outper-form other RNN models. The F1 scores for each individual range from 96.06% to 91.41% for these two RNNs.

CONCLUSIONS

RNNs with LSTM and 1D convolution layers and bidirectional LSTM with 1D convolution layers provide accurate personalized information about the daily routines of individuals. Significance: Capturing daily behavior patterns enables more accurate future BGC predictions in AID systems and improves BGC regulation.

摘要

目的

在慢性病管理中,对自由生活状态下收集的时间序列数据进行解读变得愈发重要。一些数据是通过传感器客观收集的,而有些则由个体估计并录入。在1型糖尿病(T1D)中,连续血糖监测(CGM)系统测得的血糖浓度(BGC)数据以及所注射的胰岛素剂量可用于检测进餐和身体活动的发生情况,并生成个人日常生活模式以用于自动胰岛素给药(AID)。

方法

解决了日常生活中收集的时间序列数据面临的两个挑战:数据质量提升和对BGC未宣布干扰的检测。CGM数据在不同时间段存在缺失值和异常值。人们可能会忽略报告他们的进餐和身体活动信息。在这项工作中,提出了用于预处理从T1D患者收集的真实世界数据以及检测进餐和运动事件的新方法。研究了四种循环神经网络(RNN)模型,以分别或同时检测进餐和身体活动的发生情况。

结果

具有1维卷积层的长短期记忆(LSTM)循环神经网络和具有1维卷积层的双向LSTM循环神经网络的平均准确率分别为92.32%和92.29%,优于其他RNN模型。这两种RNN的每个人的F1分数在96.06%至91.41%之间。

结论

具有LSTM和1维卷积层的循环神经网络以及具有1维卷积层的双向LSTM循环神经网络可提供有关个体日常生活的准确个性化信息。意义:捕捉日常行为模式能够在AID系统中更准确地预测未来的BGC,并改善BGC调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0111/10038808/fab22915162a/nihms-1871379-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验